Nashoba Satellite Emergency Facility

490 Main Street, Groton MA 01450

PREPARED FOR

UMass Memorial Health Care, Inc. Hahnemann Campus – Grosvenor Building 281 Lincoln Street Worcester, MA 01605

PREPARED BY

120 Front Street, Suite 500 Worcester, MA 01608

June 2025

Table of Contents

Checklist for Stormwater Report		
Stormwater Report Narrative	5	
Project Description	5	
Site Description	5	
Existing Drainage Conditions	6	
Proposed Drainage Conditions	6	
Environmentally Sensitive and Low Impact Development (LID) Techniques	7	
Regulatory Compliance	11	
Massachusetts Department of Environmental Protection (DEP) – Stormwater Management		
Standards		
Standard 1: No New Untreated Discharges or Erosion to Wetlands	11	
Standard 2: Peak Rate Attenuation	11	
Standard 3: Stormwater Recharge	12	
Standard 4: Water Quality	13	
Standard 5: Land Uses with Higher Potential Pollutant Loads (LUHPPLs)	13	
Standard 6: Critical Areas	13	
Standard 7: Redevelopments and Other Projects Subject to the Standards only to the Maximum Extent Practicable	14	
Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Controls	14	
Standard 9: Operation and Maintenance Plan	14	
Standard 10: Prohibition of Illicit Discharges	14	
Town of Groton Chapter 198 Stormwater Management – Low-Impact Development	14	
198-7B. Standards	15	
198-8 Operation and Maintenance Plans	15	
Town of Groton Chapter 352 Earth Removal Stormwater Advisory Committee	15	
352-9 Site Planning	15	
352-10 No Untreated Discharges	15	
352-11 Stormwater Recharge	15	
352-12 Pretreatment	15	
352-13 Peak Control	16	
352-14 Channel Protection	16	
352-15 Water Quality Volume	16	
352-16 Pollutant Removal	16	

352-17 Critical Areas	16
352-18 Redevelopment	16
352-19 Erosion Control	16
352-20 Stormwater Pollution Prevention Plan	16
352-21 Illicit Discharges	16
352-22 Operations and Maintenance Plans	16
352-23 Additional Requirements for Driveways	16
352-25 Additional Requirements for Projects Involving Wetland Resources	17
352-26 Specific System Design Guidelines	

Appendices

Appendix A:	Standard 1 Computations and Supporting Information
Appendix B:	Standard 2 Computations and Supporting Information
Appendix C:	Standard 3 Computations and Supporting Documentation.
Appendix D:	Standard 4 Computations and Supporting Information
Appendix E:	Standard 8 Supporting Information
Appendix F:	Standard 10 Illicit Discharge Statement

List of Tables

Table No.	Description	Page
Table 1	Existing Conditions Hydrologic Data	6
Table 2	Proposed Conditions Hydrologic Data	6
Table 3	Peak Discharge Rates (cfs*)	12
Table 4	Peak Discharge Volumes (af*)	12
Table 5	Summary of Recharge Calculations	13

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Terner Signature and Dat

Brittany Gesner June 23, 2025

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

No disturbance to any Wetland Resource Areas
Site Design Practices (e.g. clustered development, reduced frontage setbacks)
Reduced Impervious Area (Redevelopment Only)
Minimizing disturbance to existing trees and shrubs
LID Site Design Credit Requested:
Credit 1
Credit 2
Credit 3
Use of "country drainage" versus curb and gutter conveyance and pipe
Bioretention Cells (includes Rain Gardens)
Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
Treebox Filter
Water Quality Swale
Grass Channel
Green Roof
Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

\bowtie	Static
-----------	--------

Dynamic Field¹

 \boxtimes Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

- The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
- Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- · Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (continued)	
Standard 4: Water Quality (continued)	

\boxtimes	The BMP is sized	(and calculations	provided) based on:

The equivalent flow rate associated with the Water Quality Volume and documentation is
provided showing that the BMP treats the required water quality volume.

The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary
BMP and proposed TSS removal rate is provided. This documentation may be in the form of the
propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook
and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying
performance of the proprietary BMPs.

A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.

The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.

- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project

Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Stormwater Report Narrative

This Stormwater Report has been prepared to demonstrate compliance with the Massachusetts Stormwater Management Standards in accordance with the Massachusetts Wetlands Protection Act Regulations (310 CMR 10.00). This report also demonstrates compliance with the Town of Groton Town Code Chapter 198 Stormwater Management – Low Impact Development and Chapter 352 Earth Removal Stormwater Advisory Committee.

Project Description

The Applicant, UMass Memorial Health Care, is proposing to construct a satellite emergency facility and a potential future medical office building (the Project). As proposed, the Project consists of 34,200 square feet of building footprint, a helipad, surface parking lot, access drives, stormwater and utility improvements, and ancillary landscape and pedestrian improvements to support this use.

At full build, the Project will entail the construction of a parking lot generating more than 1,000 daily vehicular trips and is therefore considered a Land Use with Higher Potential Pollutant Loads (LUHPPL).

Site Description

The Project Site is a 6.9-acre parcel of land (the Site) located at 490 Main Street in Groton, Massachusetts. The Site lies within the surface watershed of the Nashua River and is bounded by a former office park (proposed for redevelopment into a residential neighborhood) to the north, Main Street to the southwest, and residential homes abutting Taylor Road to the southeast. See Figure 1, Site Locus Map.

There is one jurisdictional bordering vegetated wetland located within the center of the Site. For detailed information regarding the wetland resource areas present on the site see the Project Notice of Intent prepared for the Project.

According to the Natural Resources Conservation Service (NRCS), surface soils on the Site include Montauk, Newport, Charlton, Deerfield, and Merrimack-Urban Land Complex. On-site soils are classified as Hydrologic Soil Groups (HSG) A, B, C, and D. Based on the soil evaluation included in Appendix C, the Site *is* considered to be within an area of rapid infiltration (soils with a saturated hydraulic conductivity greater than 2.4 inches per hour).

Existing Drainage Conditions

Under existing conditions, the Site is generally undeveloped with gradually sloping topography. Figure 2 illustrates the existing drainage patterns on the Site. Currently, the Site is divided into 3 drainage areas as stormwater runoff flows to 3 Design Points, which have been identified as "Existing Wetland", "Existing Adjacent Swale", and "Main Street Drainage System". Table 1 below provides a summary of the existing conditions hydrologic data.

Table 1 Existing Conditions Hydrologic Data

Drainage Area	Discharge Location	Design Point	Area (Acres)	Curve Number	Time of Concentration (min)
EX-1	Existing Wetland	DP-1	9.2	79	14.2
EX-2	Existing Adjacent Swale	DP-2	2.2	79	8.9
EX-3	Main Street Drainage System	DP-3	3.0	78	13.8

Total = 14.4 acres

Proposed Drainage Conditions

Figure 3 illustrates the proposed "post construction" drainage conditions for the project. As shown, the Site will be divided into 6 drainage areas that discharge treated stormwater to the 3 existing Design Points. Table 2 below provides a summary of the proposed conditions hydrologic data.

Table 2 Proposed Conditions Hydrologic Data

Drainage Area	Discharge Location	Design Point	Area (Acres)	Curve Number	Time of Concentration (min)
PR-1A	Existing Wetland	DP-1	0.7	87	5.0
PR-1B	Existing Wetland	DP-1	7.7	78	11.3
PR-2A	Existing Adjacent Swale	DP-2	0.2	69	8.9
PR-2B	Infiltration Basin 1P	DP-2	4.6	89	5.0
PR-2C	Infiltration Basin 1P	DP-2	0.8	98	5.0
PR-3	Main St. Drainage System	DP-3	0.4	87	5.0

Total = 14.4 acres

The site design integrates a comprehensive stormwater management system that has been developed in accordance with the Massachusetts Stormwater Handbook and the Town of Groton Town Code. Because the Project is considered a LUHPPL and located within areas of rapidly infiltrating soils the proposed stormwater management system has been designed to treat the one-inch Water Quality Volume and provide 44% Total Suspended Solids (TSS) pretreatment prior to infiltration.

Environmentally Sensitive and Low Impact Development (LID) Techniques

Low Impact Development (LID) techniques and stormwater Best Management Practices (BMPs) implemented into the site design include no disturbance to wetland resource areas and implementation of an infiltration basin. In general, stormwater from the proposed impervious surfaces will be collected in deep-sump and hooded catch basins, pretreated further in a sediment forebay, and infiltrated to the underlying aquifer in infiltration basin 1P.

Site Location Map Nashoba Satellite Emergency Facility Groton, MA

C:\AMS\ACCDocs\VHB\16694.00-UMMH_Nashoba Valley_ER Phase I ESA\Project Files\05_Work\Cad\ld\Eng_Drainage Areas\Existing Drainage Figure.dwg

10" P.V.C.

Existing Drainage Conditions Nashoba Satellite Emergency Facility 490 Main Street Groton, MA

June 2025

C:\AMS\ACCDocs\VHB\16694.00-UMMH_Nashoba Valley_ER Phase I ESA\Project Files\05_Work\Cad\ld\Eng_Drainage Areas\Proposed Drainage Figure.dwg

Proposed Drainage Conditions Nashoba Satellite Emergency Facility 490 Main Street Groton, MA

June 2025

Regulatory Compliance

Massachusetts Department of Environmental Protection (DEP) – Stormwater Management Standards

As demonstrated below, the proposed Project fully complies with the DEP Stormwater Management Standards.

Standard 1: No New Untreated Discharges or Erosion to Wetlands

The Project has been designed to comply with Standard 1.

The Best Management Practices (BMPs) included in the proposed stormwater management system have been designed in accordance with the Massachusetts Stormwater Handbook. Supporting information and computations demonstrating that no new untreated discharges will result from the Project are presented through compliance with Standards 4 through 6.

All proposed Project stormwater outlets and conveyances have been designed to not cause erosion or scour to wetlands or receiving waters. Outlets from closed drainage systems have been designed with flared end sections and stone protection to dissipate discharge velocities. Overflows from BMP's that impound stormwater have been designed to protect downgradient areas from erosion.

Computations and supporting information for the sizing and selection of materials used to protect from scour and erosion are included in Appendix A.

Standard 2: Peak Rate Attenuation

The Project has been designed to comply with Standard 2.

The rainfall-runoff response of the Site under existing and proposed conditions was analyzed for storm events with recurrence intervals of 1, 2, 5, 10, 25, and 100 years. The results of the analysis, as summarized in Table 3 and 4 below, indicate that there is no increase in peak discharge rates or peak discharge volumes between the existing and proposed conditions for all storm events.

Computations and supporting information regarding the hydrologic modeling are included in Appendix B.

Table 3 Peak Discharge Rates (cfs*)

Design Point	1-year	2-year	5-year	10-year	25-year	100-year
Design Point DP-1: Existing Wetland						
Existing	6.9	10.3	16.4	21.6	29.2	41.0
Proposed	6.5	9.8	15.6	20.7	27.9	39.3
Design Point DP-2: Existing Adjacent Swale						
Existing	1.9	2.9	4.6	6.0	8.1	11.4
Proposed	0.1	0.1	0.3	0.4	0.6	10.5
Design Point DP-3: Main Street Drainage System						
Existing	2.1	3.2	5.2	6.9	9.4	13.2
Proposed	0.6	0.8	1.2	1.5	1.9	2.5

Table 4 Peak Discharge Volumes (af*)

Design Point	1-year	2-year	5-year	10-year	25-year	100-year
Design Point DP-1: Existing Wetland						
Existing	0.7	1.0	1.5	2.0	2.7	3.8
Proposed	0.6	0.9	1.4	1.8	2.4	3.4
Design Point DP-2: Existing Adjacent Swale						
Existing	0.2	0.2	0.4	0.5	0.6	0.9
Proposed	0.0	0.0	0.0	0.0	0.0	0.4
Design Point DP-3: Main Street Drainage System						
Existing	0.2	0.3	0.5	0.6	0.9	1.2
Proposed	0.0	0.1	0.1	0.1	0.1	0.2

Standard 3: Stormwater Recharge

The Project has been designed to comply with Standard 3.

In accordance with the Stormwater Handbook, the Required Recharge Volume for the Project is 3,820 cubic feet.

Recharge of stormwater has been provided through the use of one surface infiltration basin, which has been sized using the static method, and has been designed to drain completely within 72 hours. Table 5 below provides a summary of the proposed infiltration BMP utilized for the Project.

Table 5 Summary of Recharge Calculations

Infiltration BMP	Provided Recharge Volume (cubic feet)
Infiltration Basin #1P	37,088
Total Provided Recharge	37,088
Total Required Recharge	3,820

In some locations, vertical separation from the infiltrative BMPs and estimated seasonal high groundwater is less than four feet and therefore a mounding analysis has been completed for those basins.

Soil evaluation (including Geotechnical Report), computations, and supporting information are included in Appendix C.

Standard 4: Water Quality

The Project has been designed to comply with Standard 4.

The proposed stormwater management system implements a treatment train of BMPs that has been designed to provide 80% TSS removal of stormwater runoff from all proposed impervious surfaces as well as 44% pretreatment prior to infiltration BMPs.

Computations and supporting information, including the Long-Term Pollution Prevention Plan, are included in Appendix D.

Standard 5: Land Uses with Higher Potential Pollutant Loads (LUHPPLs)

The Project proposes a parking lot that, at full build out, will generate more than 1,000 vehicular trips per day and is therefore considered a LUHPPL. Accordingly, the Project has been designed with suitable BMPs sized to treat the 1-inch Water Quality Volume and provide the pretreatment requirement of 44% TSS removal prior to infiltration. Proposed source controls and pollution prevention measures have been identified in the Long-Term Pollution Prevention Plan included in Appendix D.

For computations and supporting information regarding the sizing of BMPs suitable for treatment of runoff from LUHPPLs, see Appendix D.

Standard 6: Critical Areas

The Project will not discharge stormwater near or to a critical area.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the Maximum Extent Practicable

The Project is not considered a redevelopment has been designed to comply with all ten of the Stormwater Management Standards.

Refer directly to each Standard for applicable computations and supporting information demonstrating compliance with each.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Controls

The Project will disturb more than 1 acre of land and is therefore required to obtain coverage under the Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) Construction General Permit. As required under this permit, a Stormwater Pollution Prevention Plan (SWPPP) will be developed and submitted before land disturbance begins. Recommended construction period pollution prevention and erosion and sedimentation controls to be finalized in the SWPPP are included in Appendix F. The Erosion and Sedimentation Control Measures included in the report address all requirements outlined in Chapter 253-19 Erosion Control, in the Town of Groton Bylaws.

Standard 9: Operation and Maintenance Plan

In compliance with Standard 9, a Post Construction Stormwater Operation and Maintenance (O&M) Plan has been developed for the Project. The O&M Plan addresses all requirements outlined in Chapter 352-22 Operations and Maintenance Plans, in the Town of Groton Bylaws.

To Note: There are no easements or public safety features to delineate on site, per the Town of Groton Parcel date and MassGIS respectively. Thus addressing 352-22 A(9) and 352-22 A(11).

The O&M Plan is included in Appendix D as part of the Long-Term Pollution Prevention Plan.

Standard 10: Prohibition of Illicit Discharges

Sanitary sewer and storm drainage structures which were part of the previous development on this site are to be completely removed during the site redevelopment. The design plans submitted with this report have been designed in full compliance with current standards. The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges.

Town of Groton Chapter 198 Stormwater Management – Low-Impact Development

As demonstrated below, the proposed Project fully complies with Town of Groton Chapter 198 Stormwater Management – Low-Impact Development.

198-7B. Standards

The Project has been designed to meet the Massachusetts Stormwater Management Standards as thoroughly outlined previously herein.

198-8 Operation and Maintenance Plans

A Post Construction Stormwater Operation and Maintenance (O&M) Plan has been developed for the Project and is included in Appendix D as part of the Long-Term Pollution Prevention Plan.

Town of Groton Chapter 352 Earth Removal Stormwater Advisory Committee

As demonstrated below, the proposed Project fully complies with Town of Groton Chapter 352 Earth Removal Stormwater Advisory Committee.

352-9 Site Planning

Low-impact development (LID) techniques are incorporated into the Project by use of two surface infiltration basins. Figures 2 and 3 included herein document the site drainage conditions under existing and proposed conditions. The Project proposed site layout minimizes total impervious area by developing in a phased manner, follows the existing topography of the Site, and protects the existing on-Site wetland.

352-10 No Untreated Discharges

See response to Massachusetts Stormwater Standard 1 included previously herein.

352-11 Stormwater Recharge

See response to Massachusetts Stormwater Standard 3 included previously herein. No underground recharge systems are proposed as part of the Project. The Project requests a waiver from 352-11(C)(7), which requires at least 80% of TSS removal required prior to discharge in areas with rapid infiltration rates. Stormwater runoff tributary to Basin #1P receives 44% pretreatment prior to recharge as required by the Massachusetts Stormwater Standards.

352-12 Pretreatment

Infiltration #1P has been preceded by deep sump hooded catch basins and a sediment forebay.

The sediment forebay has been designed to accommodate a minimum of one year's worth of sediment and includes a grass buffer or transition zone between the forebay and the basin.

Infiltration Basin #1P annual sediment loading: 2.2 (acres) x 500 pounds/Acre-Storm ÷ 90 pounds/ft3 x 10 storms/year = 122 cubic feet of sediment/year

Infiltration Basin #1P sediment forebay provided volume: 1,211 cubic feet

352-13 Peak Control

See response to Massachusetts Stormwater Standard 2 included previously herein.

352-14 Channel Protection

The one-year, twenty-four-hour return frequency storm event (one-year storm) shall be detained for an additional 24 hours longer than the predevelopment runoff discharge time. The Project is designed such that both of the infiltration basins proposed for the Project will fully recharge the one-year storm with no overflow discharge runoff from the Site.

352-15 Water Quality Volume

See response to Massachusetts Stormwater Standard 4 included previously herein.

352-16 Pollutant Removal

See response to Massachusetts Stormwater Standard 4 included previously herein. The project is tributary to the Nashua River. There is no established TMDL for the Nashua River.

352-17 Critical Areas

See response to Massachusetts Stormwater Standard 6 included previously herein.

352-18 Redevelopment

See response to Massachusetts Stormwater Standard 7 included previously herein.

352-19 Erosion Control

See response to Massachusetts Stormwater Standard 8 included previously herein.

352-20 Stormwater Pollution Prevention Plan

See response to Massachusetts Stormwater Standard 8 included previously herein.

352-21 Illicit Discharges

See response to Massachusetts Stormwater Standard 10 included previously herein.

352-22 Operations and Maintenance Plans

See response to Massachusetts Stormwater Standard 9 included previously herein.

352-23 Additional Requirements for Driveways

The two driveways for the Project have been designed such that there is a high point at the property line and all stormwater runoff impervious areas on the Site will drain back into the Site

and into the Project's stormwater management system. No stormwater runoff from impervious areas on the Property will discharge into the public right-of-way.

352-25 Additional Requirements for Projects Involving Wetland Resources

As demonstrated in response to Massachusetts Stormwater Standard 2 above, the Project minimizes changes in site hydrology from pre-project to post-project. See response to Massachusetts Stormwater Standard 2 for hydrological calculations. There are no turtle or amphibian protected habitats on site.

352-26 Specific System Design Guidelines

The Project proposes a surface, vegetated infiltration basin. The basin is easily accessed for maintenance with an appropriately sized forebay. Notes are provided on the Site Plans to prevent soil compaction during construction.

Appendix A: Standard 1 Computations and Supporting Information

- > Pipe Sizing Calculations (25-year storm)
 - The closed drainage system was designed for the 25-year storm event in accordance with the Town of Groton stormwater requirements for subdivisions.
 - Drainage pipes were sized using Manning's Equation for full-flow capacity and the Rational Method. The performance of the system was analyzed using StormCAD, a HEC-22 based program.
- Stone outlet protection for pipe ends (See Virginia Erosion and Sediment Control Handbook, Chapter 3.18)

NOAA Atlas 14, Volume 10, Version 3 Location name: Groton, Massachusetts, USA* Latitude: 42.6216°, Longitude: -71.5856° Elevation: 228 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-b	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹												
Duration				Avera	ge recurren	ce interval (years)						
Duration	1	2	5	10	25	50	100	200	500	1000			
5-min	3.89 (3.10-4.86)	4.58 (3.65-5.74)	5.72 (4.54-7.18)	6.66 (5.26-8.39)	7.97 (6.06-10.4)	8.95 (6.65-11.9)	9.98 (7.19-13.7)	11.2 (7.57-15.6)	12.9 (8.38-18.5)	14.3 (9.05-20.9)			
10-min	2.75	3.25	4.05	4.72	5.65	6.34	7.07	7.90	9.12	10.1			
	(2.19-3.44)	(2.58-4.06)	(3.21-5.08)	(3.71-5.94)	(4.29-7.37)	(4.70-8.42)	(5.09-9.71)	(5.35-11.0)	(5.92-13.1)	(6.41-14.8)			
15-min	2.16	2.55	3.18	3.70	4.43	4.97	5.54	6.20	7.15	7.94			
	(1.72-2.70)	(2.02-3.18)	(2.52-3.99)	(2.92-4.66)	(3.37-5.78)	(3.69-6.61)	(3.99-7.62)	(4.20-8.64)	(4.65-10.3)	(5.03-11.6)			
30-min	1.47 (1.17-1.84)	1.73 (1.38-2.17)	2.17 (1.72-2.71)	2.52 (1.99-3.18)	3.02 (2.29-3.94)	3.39 (2.52-4.50)	3.78 (2.72-5.19)	4.22 (2.86-5.88)	4.87 (3.16-6.99)	5.41 (3.42-7.89)			
60-min	0.931 (0.741-1.16)	1.10 (0.873-1.37)	1.37 (1.09-1.72)	1.60 (1.26-2.01)	1.91 (1.45-2.49)	2.14 (1.59-2.85)	2.39 (1.72-3.28)	2.67 (1.81-3.72)	3.08 (2.00-4.42)	3.42 (2.17-5.00)			
2-hr	0.582 (0.467-0.722)	0.699 (0.560-0.867)	0.890 (0.710-1.11)	1.05 (0.832-1.31)	1.27 (0.971-1.65)	1.43 (1.07-1.90)	1.60 (1.17-2.20)	1.81 (1.23-2.51)	2.13 (1.39-3.03)	2.40 (1.52-3.47)			
3-hr	0.442	0.536	0.688	0.814	0.988	1.12	1.26	1.43	1.69	1.91			
	(0.356-0.546)	(0.431-0.662)	(0.551-0.853)	(0.649-1.01)	(0.761-1.28)	(0.842-1.48)	(0.920-1.73)	(0.972-1.97)	(1.10-2.40)	(1.22-2.76)			
6-hr	0.280 (0.227-0.343)	0.341 (0.277-0.419)	0.441 (0.356-0.543)	0.524 (0.421-0.648)	0.638 (0.495-0.824)	0.723 (0.548-0.951)	0.815 (0.601-1.11)	0.928 (0.635-1.27)	1.10 (0.722-1.55)	1.25 (0.799-1.80)			
12-hr	0.175	0.213	0.275	0.327	0.398	0.451	0.508	0.578	0.685	0.778			
	(0.143-0.213)	(0.174-0.260)	(0.224-0.336)	(0.264-0.401)	(0.311-0.510)	(0.344-0.589)	(0.376-0.689)	(0.397-0.787)	(0.451-0.960)	(0.498-1.11)			
24-hr	0.106	0.129	0.167	0.198	0.241	0.273	0.308	0.350	0.414	0.470			
	(0.087-0.128)	(0.106-0.156)	(0.137-0.202)	(0.161-0.241)	(0.189-0.306)	(0.210-0.354)	(0.229-0.414)	(0.242-0.473)	(0.274-0.577)	(0.302-0.664)			
2-day	0.060	0.074	0.096	0.114	0.140	0.158	0.178	0.203	0.240	0.273			
	(0.050-0.072)	(0.061-0.089)	(0.079-0.116)	(0.094-0.138)	(0.110-0.176)	(0.122-0.204)	(0.133-0.238)	(0.141-0.273)	(0.159-0.332)	(0.176-0.383)			
3-day	0.044	0.054	0.069	0.083	0.101	0.114	0.128	0.146	0.172	0.194			
	(0.037-0.053)	(0.045-0.064)	(0.058-0.083)	(0.068-0.099)	(0.080-0.126)	(0.088-0.146)	(0.096-0.170)	(0.101-0.195)	(0.114-0.237)	(0.125-0.272)			
4-day	0.036	0.043	0.055	0.066	0.080	0.090	0.101	0.115	0.135	0.151			
	(0.030-0.042)	(0.036-0.051)	(0.046-0.066)	(0.054-0.079)	(0.063-0.100)	(0.070-0.115)	(0.076-0.134)	(0.080-0.153)	(0.089-0.185)	(0.098-0.211)			
7-day	0.024	0.029	0.036	0.042	0.051	0.057	0.064	0.072	0.083	0.092			
	(0.020-0.029)	(0.024-0.034)	(0.030-0.043)	(0.035-0.051)	(0.041-0.063)	(0.045-0.072)	(0.048-0.084)	(0.050-0.095)	(0.055-0.113)	(0.060-0.128)			
10-day	0.020	0.023	0.028	0.033	0.039	0.043	0.048	0.054	0.061	0.068			
	(0.017-0.023)	(0.019-0.027)	(0.024-0.034)	(0.027-0.039)	(0.031-0.048)	(0.034-0.055)	(0.036-0.063)	(0.038-0.071)	(0.041-0.083)	(0.044-0.093)			
20-day	0.014	0.016	0.018	0.021	0.024	0.027	0.029	0.032	0.035	0.038			
	(0.012-0.016)	(0.013-0.018)	(0.016-0.022)	(0.017-0.025)	(0.019-0.029)	(0.021-0.033)	(0.022-0.037)	(0.022-0.041)	(0.023-0.047)	(0.024-0.052)			
30-day	0.011	0.013	0.015	0.016	0.019	0.020	0.022	0.024	0.026	0.027			
	(0.010-0.013)	(0.011-0.015)	(0.012-0.017)	(0.014-0.019)	(0.015-0.022)	(0.016-0.025)	(0.016-0.028)	(0.017-0.031)	(0.017-0.035)	(0.018-0.037)			
45-day	0.009	0.010	0.012	0.013	0.014	0.016	0.017	0.018	0.019	0.020			
	(0.008-0.011)	(0.009-0.012)	(0.010-0.014)	(0.011-0.015)	(0.012-0.017)	(0.012-0.019)	(0.013-0.021)	(0.013-0.023)	(0.013-0.026)	(0.013-0.028)			
60-day	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.016			
	(0.007-0.009)	(0.008-0.010)	(0.008-0.012)	(0.009-0.013)	(0.010-0.015)	(0.010-0.016)	(0.010-0.018)	(0.011-0.019)	(0.011-0.021)	(0.011-0.023)			

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

10¹ Precipitation intensity (in/hr) 10⁰ 10^{-1} 10-2 - Pri-Duration 7-day . 10-day . 45-day . 60-day . 60-min 2-day 3-day 4-day 10-min 15-min 30-min 2-hr 3-hr 24-hr 20-day 30-day 5-min 10¹ Precipitation intensity (in/hr) 10⁰ 10^{-1} 10-2 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years)

Duration										
— 5-min	- 2-day									
	— 3-day									
— 15-min	- 4-day									
	7-day									
60-min	— 10-day									
2-hr	20-day									
— 3-hr	— 30-day									
— 6-hr	— 45-day									
- 12-hr										
24-hr										

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Apr 23 15:33:39 2025

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

III - 164

3.18

Stormcad Conduit Output Table - Hydraulic Pipe Analysis

Project	Nashoba SEF	Project #	16694.00				
Calculated by	CSH	Date	6/17/2025				
Checked by	MDY	Date	6/19/2025				

Start Node	Stop Node	Upstream Inlet Area	Upstream Inlet C	System CA	Time of Conc.	Intensity	Pipe Size	Material	Manning's "n"	Slope	Length	Capacity (Full Flow)	Capacity (Design)	Velocity (Average)	Rim (Upper)	Hydraulic Grade Line In	Rim (Lower)	Hydraulic Grade Line Out	Invert (Upper)	Invert (Lower)
-	-	(acres)	-	(acres)	(min)	(in/hr)	(in)	-	-	(ft/ft)	(ft)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
AD-202	DMH-201	4.8	0.35	1.7	5.0	7.97	18	RCP	0.012	0.017	180.8	14.90	14.90	9.56	233.99	232.37	236.26	229.75	231.00	227.90
DMH-201	FES-200	(N/A)	(N/A)	1.7	0.0	7.82	18	RCP	0.012	0.017	221.0	14.92	14.92	7.54	236.26	229.75	227.81	226.72	227.80	224.00
RL-1	DMH-302	0.4	0.90	0.4	5.0	7.97	12	RCP	0.012	0.014	14.3	4.57	4.57	6.24	235.00	230.75	234.66	230.43	230.00	229.80
DMH-301	DMH-302	(N/A)	(N/A)	0.3	0.0	7.95	12	RCP	0.012	0.010	58.4	3.91	3.91	5.33	233.96	230.39	234.66	229.70	229.70	229.10
AD-410	DMH-408	1.1	0.32	0.4	5.0	7.97	12	RCP	0.012	0.028	67.0	6.44	6.44	7.95	234.36	232.12	233.50	230.00	231.40	229.53
CB-416	DMH-414	0.6	0.77	0.4	5.0	7.97	12	RCP	0.012	0.017	145.2	4.96	4.96	6.85	233.44	230.90	233.04	228.32	230.10	227.70
DMH-414	DMH-413	(N/A)	(N/A)	0.7	0.0	7.81	18	RCP	0.012	0.005	188.0	8.30	8.30	5.06	233.04	226.52	232.02	225.76	225.60	224.60
CB-415	DMH-414	0.4	0.79	0.3	5.0	7.97	12	RCP	0.012	0.026	7.7	6.21	6.21	7.33	232.94	230.55	233.04	230.20	229.90	229.70
AD-102	DMH-101	2.8	0.37	1.0	5.0	7.97	18	RCP	0.012	0.007	274.9	9.21	9.21	5.90	233.00	231.12	232.98	229.32	230.00	228.20
DMH-101	FES-100	(N/A)	(N/A)	1.0	0.0	7.61	18	RCP	0.012	0.007	61.2	9.21	9.21	5.86	232.98	229.19	229.20	228.78	228.10	227.70
CB-409	DMH-408	0.2	0.55	0.1	5.0	7.97	12	RCP	0.012	0.019	9.1	5.26	5.26	4.94	232.72	230.23	233.50	230.25	229.70	229.53
DMH-408	DMH-405	(N/A)	(N/A)	0.5	0.0	7.91	12	RCP	0.012	0.028	123.1	6.44	6.44	8.48	233.50	230.25	229.62	226.54	229.43	226.00
DMH-413	DMH-411	(N/A)	(N/A)	1.4	0.0	7.52	18	RCP	0.012	0.016	183.4	14.20	14.20	8.86	232.02	225.76	226.18	222.63	224.50	221.64
CB-407	DMH-405	0.8	0.81	0.6	5.0	7.97	18	RCP	0.012	0.016	12.7	14.28	14.28	7.38	229.87	227.76	229.62	227.39	226.90	226.70
DMH-405	DMH-403	(N/A)	(N/A)	1.3	0.0	7.79	18	RCP	0.012	0.021	204.6	16.50	16.50	9.76	229.62	225.71	222.73	221.04	224.50	220.20
CB-406	DMH-405	0.2	0.75	0.2	5.0	7.97	12	RCP	0.012	0.014	13.9	4.63	4.63	5.17	229.39	226.90	229.62	226.60	226.40	226.20
CB-412	DMH-411	0.3	0.88	0.3	5.0	7.97	12	RCP	0.012	0.026	7.8	6.19	6.19	7.25	226.25	223.94	226.18	223.59	223.30	223.10
DMH-411	DMH-403	(N/A)	(N/A)	1.7	0.0	7.36	18	RCP	0.012	0.016	90.3	14.39	14.39	9.19	226.18	222.88	222.73	221.20	221.54	220.10
DMH-403	DMH-401	(N/A)	(N/A)	3.2	0.0	7.28	24	RCP	0.012	0.012	81.5	27.14	27.14	9.71	222.73	220.31	220.56	219.05	218.60	217.60
CB-404	DMH-403	0.2	0.80	0.2	5.0	7.97	12	RCP	0.012	0.007	14.1	3.26	3.26	4.09	222.70	220.30	222.73	220.31	219.70	219.60
CB-402	DMH-401	0.2	0.81	0.2	5.0	7.97	12	RCP	0.012	0.005	12.9	2.84	2.84	3.66	219.52	219.05	220.56	219.05	218.30	218.23
DMH-401	FES-400	(N/A)	(N/A)	3.4	0.0	7.22	24	RCP	0.012	0.011	26.1	26.28	26.28	9.50	220.56	219.05	218.46	218.59	217.30	217.00
RL-2	DMH-301	0.4	0.90	0.3	5.0	7.97	12	RCP	0.012	0.014	14.3	4.56	4.56	6.01	235.00	230.69	233.96	230.37	230.00	229.80
DMH-302	DMH-413	(N/A)	(N/A)	0.7	0.0	7.87	18	RCP	0.012	0.025	118.6	18.10	18.10	9.03	234.66	227.91	232.02	225.76	227.00	224.00

Do

Outfall Riprap Sizing and Velocity Calculations

	Project	Nashoba	a SEF		Project #	16694.00			
	Calculated by	CSH			Date	6/19/2025			
	Checked by	KSS			Date	6/19/2025			
$\underline{Tw} \ge 0.5$	5 <u>Do</u>					<u>Tw < 0.5Do</u>			
3Do 5 (1) La	w = Do + 0.4La			Z	Do	3Do $W = Do + La$ $2 (min.)$ La			
OUTLET DI	ESCRIPTION:		FES-100	FES-200	FES-400				
Design Sto	rm	(yr)	25	10	25				
Flow / Disc	harge (Q)	(cfs)	5.5	7.5	11.9				
			·						
Defined Ch	annel ?	-	NO	NO	NO				
Defined Ch	annel Width	(ft)	0	0	0				
Outlet Pipe	e Diameter (D _o)	(in)	18	18	24				
Tailwater C	ondition (T _w)	(ft)	TW < 0.5D	TW < 0.5D	TW ≥ 0.5D				
			·						
Apron Leng	gth (L _A)	(ft)	11.5	11.5	13.5				
Apron Wid	th at Outlet (3D ₀)	(ft)	4.5	4.5	6				
Apron Wid	th at End (W)	(ft)	13	13	7.4				
		<i>(</i> ,)		<u> </u>					
Median Sto	Diameter (d ₅₀)	(in)	6	6	6				
Largest Sto		(in) ('_)	9	9	9				
Apron Dep	th (Z)	(in)	13.5	13.5	13.5				
Apron Lengt	th (L _A):	Length = Fr	om Virginia D	CR Handboo	k - Plate 3.18-	-3 if $T_W < 0.5D$			
		Length = Fr	om Virginia D	CR Handboo	k - Plate 3.18-	$if T_W \ge 0.5D$			
Apron Width	at Outlet (3D ₀):	Width = $3 x$	pipe dia. (or v	vidth of chan	nel)				
Apron Width	at End (W):	Width = dia.	+ apron leng	th		if T _w < 0.5D			
		Width = dia.	+ 0.4 x apror	n length		if $T_W \ge 0.5D$			
		or apron wid	dth = channel	width if a wel	ll defined char	nnel exists			
Rock Riprap	r:	Median Dia	meter (d ₅₀) =	From Virginia	a DCR Handb	ook - Plate 3.18-3 or 4			
		Largest stor	ne dia = 1.5 x	d ₅₀					
Apron Depth	n (Z):	6" or 1.5 x la	argest stone a	lia					

Appendix B: Standard 2 Computations and Supporting Information

The rainfall-runoff response of the Site under existing and proposed conditions was evaluated for storm events with recurrence intervals of 1, 2, 5, 10, 25 and 100-years. Rainfall volumes used for this analysis were based on the Natural Resources Conservation Service (NRCS) Type III, 24-hour storm and NOAA Atlas 14 precipitation depths for the site: 2.55, 3.10, 4.01, 4.76, 5.80, and 7.39 inches, respectively. Runoff coefficients for the pre- and post-development conditions, as previously shown in Tables 2 and 3 respectively, were determined using NRCS Technical Release 55 (TR-55) methodology as provided in HydroCAD. Drainage areas used in the analyses were described in previous sections and shown on Figures 2 and 3. The HydroCAD model is based on the NRCS Technical Release 20 (TR-20) Model for Project Formulation Hydrology.

NOAA Atlas 14, Volume 10, Version 3 Location name: Groton, Massachusetts, USA* Latitude: 42.6216°, Longitude: -71.5856° Elevation: 228 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹													
Duration				Average	recurrence	interval (ye	ars)							
Duration	1	2	5	10	25	50	100	200	500	1000				
5-min	0.324 (0.258-0.405)	0.382 (0.304-0.478)	0.477 (0.378-0.598)	0.555 (0.438-0.699)	0.664 (0.505-0.868)	0.746 (0.554-0.992)	0.832 (0.599-1.14)	0.931 (0.631-1.30)	1.07 (0.698-1.54)	1.19 (0.754-1.74)				
10-min	0.459 (0.365-0.573)	0.541 (0.430-0.677)	0.675 (0.535-0.846)	0.787 (0.619-0.990)	0.941 (0.715-1.23)	1.06 (0.784-1.40)	1.18 (0.848-1.62)	1.32 (0.892-1.84)	1.52 (0.987-2.18)	1.69 (1.07-2.46)				
15-min	0.540 (0.430-0.674)	0.637 (0.506-0.796)	0.795 (0.630-0.997)	0.926 (0.729-1.17)	1.11 (0.842-1.45)	1.24 (0.923-1.65)	1.39 (0.998-1.90)	1.55 (1.05-2.16)	1.79 (1.16-2.57)	1.99 (1.26-2.90)				
30-min	0.735 (0.585-0.918)	0.867 (0.690-1.08)	1.08 (0.858-1.36)	1.26 (0.993-1.59)	1.51 (1.15-1.97)	1.69 (1.26-2.25)	1.89 (1.36-2.59)	2.11 (1.43-2.94)	2.44 (1.58-3.49)	2.70 (1.71-3.95)				
60-min	0.931 (0.741-1.16)	1.10 (0.873-1.37)	1.37 (1.09-1.72)	1.60 (1.26-2.01)	1.91 (1.45-2.49)	2.14 (1.59-2.85)	2.39 (1.72-3.28)	2.67 (1.81-3.72)	3.08 (2.00-4.42)	3.42 (2.17-5.00)				
2-hr	1.16 (0.934-1.44)	1.40 (1.12-1.74)	1.78 (1.42-2.22)	2.10 (1.66-2.62)	2.54 (1.94-3.30)	2.86 (2.14-3.79)	3.21 (2.34-4.41)	3.63 (2.47-5.02)	4.26 (2.77-6.07)	4.80 (3.04-6.95)				
3-hr	1.33 (1.07-1.64)	1.61 (1.30-1.99)	2.07 (1.66-2.56)	2.45 (1.95-3.04)	2.97 (2.29-3.85)	3.36 (2.53-4.44)	3.78 (2.76-5.18)	4.28 (2.92-5.91)	5.06 (3.31-7.19)	5.74 (3.65-8.28)				
6-hr	1.68 (1.36-2.06)	2.05 (1.66-2.51)	2.64 (2.14-3.25)	3.14 (2.52-3.88)	3.83 (2.97-4.94)	4.33 (3.29-5.70)	4.88 (3.60-6.67)	5.56 (3.80-7.62)	6.60 (4.32-9.31)	7.50 (4.79-10.8)				
12-hr	2.12 (1.73-2.58)	2.58 (2.10-3.14)	3.32 (2.71-4.06)	3.95 (3.19-4.84)	4.80 (3.75-6.15)	5.44 (4.15-7.10)	6.12 (4.54-8.30)	6.97 (4.79-9.48)	8.26 (5.44-11.6)	9.38 (6.01-13.3)				
24-hr	2.55 (2.10-3.07)	3.10 (2.55-3.75)	4.01 (3.29-4.86)	4.76 (3.88-5.80)	5.80 (4.56-7.36)	6.56 (5.04-8.51)	7.39 (5.50-9.94)	8.41 (5.81-11.4)	9.96 (6.58-13.8)	11.3 (7.26-16.0)				
2-day	2.92 (2.43-3.50)	3.57 (2.97-4.28)	4.63 (3.83-5.57)	5.51 (4.53-6.66)	6.72 (5.32-8.48)	7.62 (5.89-9.80)	8.59 (6.43-11.5)	9.77 (6.78-13.1)	11.6 (7.67-16.0)	13.1 (8.46-18.4)				
3-day	3.21 (2.68-3.82)	3.90 (3.25-4.66)	5.04 (4.18-6.03)	5.98 (4.93-7.19)	7.27 (5.78-9.12)	8.24 (6.39-10.5)	9.27 (6.95-12.3)	10.5 (7.33-14.1)	12.4 (8.25-17.1)	14.0 (9.06-19.6)				
4-day	3.46 (2.90-4.12)	4.18 (3.50-4.98)	5.36 (4.47-6.40)	6.34 (5.25-7.61)	7.69 (6.12-9.61)	8.69 (6.75-11.1)	9.77 (7.33-12.9)	11.0 (7.71-14.7)	13.0 (8.63-17.8)	14.6 (9.44-20.3)				
7-day	4.16 (3.51-4.92)	4.93 (4.15-5.83)	6.18 (5.18-7.33)	7.21 (6.01-8.60)	8.64 (6.91-10.7)	9.71 (7.56-12.2)	10.8 (8.14-14.1)	12.1 (8.51-16.1)	14.0 (9.38-19.1)	15.6 (10.1-21.6)				
10-day	4.84 (4.10-5.69)	5.62 (4.76-6.63)	6.91 (5.82-8.17)	7.98 (6.67-9.47)	9.45 (7.58-11.6)	10.6 (8.24-13.2)	11.7 (8.79-15.1)	13.0 (9.15-17.1)	14.8 (9.95-20.1)	16.3 (10.6-22.6)				
20-day	6.85 (5.85-8.01)	7.69 (6.56-9.00)	9.07 (7.70-10.6)	10.2 (8.60-12.0)	11.8 (9.49-14.3)	13.0 (10.2-16.0)	14.2 (10.6-18.0)	15.4 (10.9-20.1)	17.0 (11.5-23.0)	18.3 (11.9-25.1)				
30-day	8.53 (7.32-9.93)	9.42 (8.07-11.0)	10.9 (9.27-12.7)	12.1 (10.2-14.1)	13.7 (11.1-16.5)	15.0 (11.8-18.4)	16.2 (12.2-20.4)	17.4 (12.4-22.7)	18.9 (12.8-25.4)	20.0 (13.1-27.3)				
45-day	10.6 (9.16-12.3)	11.6 (9.96-13.4)	13.1 (11.2-15.2)	14.4 (12.2-16.8)	16.1 (13.1-19.3)	17.5 (13.8-21.3)	18.8 (14.1-23.4)	20.0 (14.3-25.9)	21.4 (14.5-28.5)	22.3 (14.6-30.4)				
60-day	12.4 (10.7-14.3)	13.4 (11.6-15.4)	15.0 (12.9-17.4)	16.3 (14.0-19.0)	18.2 (14.8-21.7)	19.7 (15.5-23.8)	21.1 (15.8-26.1)	22.2 (15.9-28.6)	23.6 (16.1-31.3)	24.4 (16.1-33.1)				

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical
25 20 Precipitation depth (in) 15 10 5 0 60-min 0-Pr Duration 10-min 15-min 30-min 2-hr 3-hr 24-hr 7-day 10-day 30-day 45-day 60-day 2-day 3-day 4-day 20-day 5-min 25 20 Precipitation depth (in) 15 10 5 0 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years)

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Apr 23 15:32:45 2025

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

16694.00-EX

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Yr	Type III 24-hr		Default	24.00	1	2.55	2
2	2-Yr	Type III 24-hr		Default	24.00	1	3.10	2
3	5-Yr	Type III 24-hr		Default	24.00	1	4.01	2
4	10-Yr	Type III 24-hr		Default	24.00	1	4.76	2
5	25-Yr	Type III 24-hr		Default	24.00	1	5.80	2
6	100-Yr	Type III 24-hr		Default	24.00	1	7.39	2

Rainfall Events Listing

16694.00-EX Prepared by VHB, Inc HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.8	68	<50% Grass cover, Poor, HSG A (EX-2)
3.8	79	<50% Grass cover, Poor, HSG B (EX-1, EX-3)
3.7	86	<50% Grass cover, Poor, HSG C (EX-1, EX-2, EX-3)
0.4	89	<50% Grass cover, Poor, HSG D (EX-1)
0.5	98	Paved parking, HSG B (EX-1, EX-3)
0.5	98	Paved parking, HSG C (EX-1, EX-2, EX-3)
0.1	98	Paved parking, HSG D (EX-1)
0.2	98	Roofs, HSG B (EX-1, EX-3)
0.1	98	Roofs, HSG C (EX-1)
0.0	98	Roofs, HSG D (EX-1)
1.3	55	Woods, Good, HSG B (EX-1, EX-3)
1.8	70	Woods, Good, HSG C (EX-1, EX-2, EX-3)
1.2	77	Woods, Good, HSG D (EX-1)
14.4	79	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.8	HSG A	EX-2
5.8	HSG B	EX-1, EX-3
6.1	HSG C	EX-1, EX-2, EX-3
1.7	HSG D	EX-1
0.0	Other	
14.4		TOTAL AREA

16694.00-EX

Ground Covers (all nodes)

HSG	i-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acre	es)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
().8	3.8	3.7	0.4	0.0	8.7	<50% Grass cover, Poor	EX-1, EX-2, EX-3
(0.0	0.5	0.5	0.1	0.0	1.1	Paved parking	EX-1, EX-2, EX-3
(0.0	0.2	0.1	0.0	0.0	0.3	Roofs	EX-1, EX-3
(0.0	1.3	1.8	1.2	0.0	4.3	Woods, Good	EX-1, EX-2, EX-3
(8.0	5.8	6.1	1.7	0.0	14.4	TOTAL AREA	

16694.00-EX	Type III 24-hr	1-Yr Rail	nfall=2.55"
Prepared by VHB, Inc		Printed	6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions	LLC		Page 6

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Subcat EX-1	Runoff Area=9.2 ac 7.75% Impervious Runoff Depth>0.87" Flow Length=1,000' Tc=14.2 min CN=79 Runoff=6.9 cfs 0.7 af
SubcatchmentEX-2: Subcat EX-2	Runoff Area=2.2 ac 9.09% Impervious Runoff Depth>0.87" Flow Length=639' Tc=8.9 min CN=79 Runoff=1.9 cfs 0.2 af
SubcatchmentEX-3: Subcat EX-3	Runoff Area=3.0 ac 16.98% Impervious Runoff Depth>0.82" Flow Length=823' Tc=13.8 min CN=78 Runoff=2.1 cfs 0.2 af
Link DP-1: Existing Wetland	Inflow=6.9 cfs 0.7 af Primary=6.9 cfs 0.7 af
Link DP-2: Existing Adjacent Swale	Inflow=1.9 cfs 0.2 af Primary=1.9 cfs 0.2 af
Link DP-3: Main Street Drainage System	Inflow=2.1 cfs 0.2 af Primary=2.1 cfs 0.2 af

Total Runoff Area = 14.4 ac Runoff Volume = 1.0 af Average Runoff Depth = 0.86" 90.12% Pervious = 13.0 ac 9.88% Impervious = 1.4 ac

Summary for Subcatchment EX-1: Subcat EX-1

Runoff = 6.9 cfs @ 12.21 hrs, Volume= 0.7 af, Depth> 0.87" Routed to Link DP-1 : Existing Wetland

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 1-Yr Rainfall=2.55"

Area (ad	c) CN	Descrip	otion		
2.	5 79	<50% (Grass cove	er, Poor, H	SG B
2.	3 86	<50% (Grass cove	er, Poor, HS	SG C
0.	4 89	<50% (Grass cove	er, Poor, H	SG D
0.	3 98	Paved	parking, H	SG B	
0.	1 98	Paved	parking, H	SG C	
0.	1 98	Paved	parking, H	SG D	
0.	2 98	Roofs,	HSG B		
0.	1 98	Roofs,	HSG C		
0.	0 98	Roofs,	HSG D		
0.	7 55	Woods	, Good, H	SG B	
1.	5 70	Woods	, Good, H	SG C	
1.	2 77	Woods	<u>, Good, H</u>	SG D	
9.	2 79	Weight	ed Averag	е	
8.	5	92.25%	Pervious	Area	
0.	7	7.75%	Imperviou	s Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.4	50	0.0740	0.25		Sheet Flow, Grass - Sheet
					Grass: Short n= 0.150 P2= 3.10"
10.8	950	0.0440	1.47		Shallow Concentrated Flow, Grass - Concentrated
					Short Grass Pasture Kv= 7.0 fps
14.2	1,000	Total			

Summary for Subcatchment EX-2: Subcat EX-2

Runoff = 1.9 cfs @ 12.13 hrs, Volume= 0.2 af, Depth> 0.87" Routed to Link DP-2 : Existing Adjacent Swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 1-Yr Rainfall=2.55"

Area (ac	c) CN	Descrip	otion									
0.8	8 68	<50% (50% Grass cover, Poor, HSG A									
1.	0 86	<50% (Grass cove	er, Poor, H	SG C							
0.2	2 98	Paved	parking, H	SG C								
0.	0 98	Roofs,	HSG C									
0.2	2 70	Woods	<u>, Good, H</u>	SG C								
2.2	2 79	Weight	ed Averag	е								
2.	0	90.91%	6 Pervious	Area								
0.3	2	9.09%	Imperviou	s Area								
Tc	Length	Slope	Velocity	Capacity	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet							
					Grass: Short n= 0.150 P2= 3.10"							
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated							
					Short Grass Pasture Kv= 7.0 fps							
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved Drive							
					Paved Kv= 20.3 fps							
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated							
					Short Grass Pasture Kv= 7.0 fps							
8.9	639	Total										

Summary for Subcatchment EX-3: Subcat EX-3

Runoff = 2.1 cfs @ 12.21 hrs, Volume= 0.2 af, Depth> 0.82" Routed to Link DP-3 : Main Street Drainage System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 1-Yr Rainfall=2.55"

Area (ac	;) CN	Descrip	otion								
1.3	3 79	<50% (50% Grass cover, Poor, HSG B								
0.	5 86	<50% (Grass cove	er, Poor, H	SG C						
0.3	3 98	Paved	parking, H	SG B							
0.	1 98	Paved	parking, H	SG C							
0.	1 98	Roofs,	HSG B								
0.	6 55	Woods	, Good, H	SG B							
0.	1 70	Woods	<u>, Good, H</u>	SG C							
3.	0 78	Weight	ed Averag	е							
2.	5	83.02%	6 Pervious	Area							
0.	5	16.98%	6 Impervio	us Area							
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
5.5	50	0.0220	0.15		Sheet Flow, Grass - Sheet						
					Grass: Short n= 0.150 P2= 3.10"						
8.3	773	0.0490	1.55		Shallow Concentrated Flow, Grass - Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
13.8	823	Total									

Summary for Link DP-1: Existing Wetland

Inflow Are	ea =	9.2 ac, 7.7	75% Impervious,	Inflow Depth >	0.8	7" for 1-Yı	r event
Inflow	=	6.9 cfs @	12.21 hrs, Volu	ume= 0.7	′ af		
Primary	=	6.9 cfs @	12.21 hrs, Volu	ıme= 0.7	′ af,	Atten= 0%,	Lag= 0.0 min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	ı =	2.2 ac,	9.09	9% Impervi	ious,	Inflow	Depth >	0.8	7" for 1-Y	'r event	
Inflow	=	1.9 cfs	@ '	12.13 hrs,	Volu	me=	0.	2 af			
Primary	=	1.9 cfs	@ '	12.13 hrs,	Volu	me=	0.	2 af,	Atten= 0%,	Lag= 0.0) min

Summary for Link DP-3: Main Street Drainage System

Inflow Area	a =	3.0 ac, 16.9	8% Impervious,	Inflow Depth > 0	.82" for 1-Yr ev	vent
Inflow	=	2.1 cfs @	12.21 hrs, Volu	me= 0.2 a	ıf	
Primary	=	2.1 cfs @	12.21 hrs, Volu	me= 0.2 a	ıf, Atten= 0%, La	ag= 0.0 min

16694.00-EX	Type III 24-hr	2-Yr Rail	nfall=3.10"
Prepared by VHB, Inc		Printed	6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions LLC	C		Page 13

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Subcat EX-1	Runoff Area=9.2 ac 7.75% Impervious Runoff Depth>1.26" Flow Length=1,000' Tc=14.2 min CN=79 Runoff=10.3 cfs 1.0 af
SubcatchmentEX-2: Subcat EX-2	Runoff Area=2.2 ac 9.09% Impervious Runoff Depth>1.26" Flow Length=639' Tc=8.9 min CN=79 Runoff=2.9 cfs 0.2 af
SubcatchmentEX-3: Subcat EX-3	Runoff Area=3.0 ac 16.98% Impervious Runoff Depth>1.20" Flow Length=823' Tc=13.8 min CN=78 Runoff=3.2 cfs 0.3 af
Link DP-1: Existing Wetland	Inflow=10.3 cfs 1.0 af Primary=10.3 cfs 1.0 af
Link DP-2: Existing Adjacent Swale	Inflow=2.9 cfs 0.2 af Primary=2.9 cfs 0.2 af
Link DP-3: Main Street Drainage System	Inflow=3.2 cfs 0.3 af Primary=3.2 cfs 0.3 af

Total Runoff Area = 14.4 ac Runoff Volume = 1.5 af Average Runoff Depth = 1.25" 90.12% Pervious = 13.0 ac 9.88% Impervious = 1.4 ac

Summary for Subcatchment EX-1: Subcat EX-1

Runoff = 10.3 cfs @ 12.20 hrs, Volume= 1.0 af, Depth> 1.26" Routed to Link DP-1 : Existing Wetland

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Yr Rainfall=3.10"

Area (ad	c) CN	Descri	otion									
2.	5 79	<50% (<50% Grass cover, Poor, HSG B									
2.	3 86	<50% (<50% Grass cover, Poor, HSG C									
0.	4 89	<50% (Grass cove	er, Poor, H	SG D							
0.	3 98	Paved	parking, H	SG B								
0.	1 98	Paved	parking, H	SG C								
0.	1 98	Paved	parking, H	SG D								
0.	2 98	Roofs,	HSG B									
0.	1 98	Roofs,	HSG C									
0.	0 98	Roofs,	HSG D									
0.	7 55	Woods	, Good, H	SG B								
1.	5 70	Woods	, Good, H	SG C								
1.	2 77	Woods	, Good, H	SG D								
9.	2 79	Weight	ed Averag	е								
8.	5	92.25%	6 Pervious	Area								
0.	7	7.75%	Imperviou	s Area								
Тс	Length	Slope	Velocity	Capacity	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
3.4	50	0.0740	0.25		Sheet Flow, Grass - Sheet							
					Grass: Short n= 0.150 P2= 3.10"							
10.8	950	0.0440	1.47		Shallow Concentrated Flow, Grass - Concentrated							
					Short Grass Pasture Kv= 7.0 fps							
14.2	1,000	Total										

Summary for Subcatchment EX-2: Subcat EX-2

Runoff = 2.9 cfs @ 12.13 hrs, Volume= 0.2 af, Depth> 1.26" Routed to Link DP-2 : Existing Adjacent Swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Yr Rainfall=3.10"

Area (ac) CN	Descrip	otion								
0.8	8 68	<50% (50% Grass cover, Poor, HSG A								
1.0	0 86	<50% (Grass cove	er, Poor, H	SG C						
0.2	2 98	Paved	parking, H	SG C							
0.0	0 98	Roofs,	HSG C								
0.2	2 70	Woods	, Good, HS	SG C							
2.2	2 79	Weight	ed Averag	е							
2.0	0	90.91%	6 Pervious	Area							
0.2	2	9.09%	Imperviou	s Area							
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet						
					Grass: Short n= 0.150 P2= 3.10"						
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved Drive						
					Paved Kv= 20.3 fps						
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
8.9	639	Total									

Summary for Subcatchment EX-3: Subcat EX-3

Runoff = 3.2 cfs @ 12.20 hrs, Volume= 0.3 af, Depth> 1.20" Routed to Link DP-3 : Main Street Drainage System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Yr Rainfall=3.10"

Area (ac	;) CN	Descrip	otion								
1.3	3 79	<50% (50% Grass cover, Poor, HSG B								
0.	5 86	<50% (Grass cove	er, Poor, H	SG C						
0.3	3 98	Paved	parking, H	SG B							
0.	1 98	Paved	parking, H	SG C							
0.	1 98	Roofs,	HSG B								
0.	6 55	Woods	, Good, H	SG B							
0.	1 70	Woods	<u>, Good, H</u>	SG C							
3.	0 78	Weight	ed Averag	е							
2.	5	83.02%	6 Pervious	Area							
0.	5	16.98%	6 Impervio	us Area							
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
5.5	50	0.0220	0.15		Sheet Flow, Grass - Sheet						
					Grass: Short n= 0.150 P2= 3.10"						
8.3	773	0.0490	1.55		Shallow Concentrated Flow, Grass - Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
13.8	823	Total									

Summary for Link DP-1: Existing Wetland

Inflow Area	ı =	9.2 ac,	7.75	5% Impervi	ous,	Inflow	Depth >	1.2	6" for 2-Y	r event	
Inflow	=	10.3 cfs (@ [·]	12.20 hrs,	Volu	me=	1.	0 af			
Primary	=	10.3 cfs (@ '	12.20 hrs,	Volu	me=	1.	0 af,	Atten= 0%,	Lag= 0.0	0 min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	a =	2.2 ac,	9.09	9% Impervi	ious,	Inflow	Depth >	1.2	6" for 2-Y	r event	
Inflow	=	2.9 cfs	@	12.13 hrs,	Volu	me=	0.2	2 af			
Primary	=	2.9 cfs	@	12.13 hrs,	Volu	me=	0.2	2 af,	Atten= 0%,	Lag= 0.0	min

Summary for Link DP-3: Main Street Drainage System

Inflow Area	a =	3.0 ac, 16.9	8% Impervious,	Inflow Depth >	1.20" fo	or 2-Yr event	
Inflow	=	3.2 cfs @	12.20 hrs, Volu	ime= 0.3	8 af		
Primary	=	3.2 cfs @	12.20 hrs, Volu	ime= 0.3	8 af, Atten	i= 0%, Lag= 0.0) min

16694.00-EX	Type III 24-hr 5-Yr Rainfall=4.01
Prepared by VHB, Inc	Printed 6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions LLC	C Page 20

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Subcat EX-1	Runoff Area=9.2 ac 7.75% Impervious Runoff Depth>1.97" Flow Length=1,000' Tc=14.2 min CN=79 Runoff=16.4 cfs 1.5 af
SubcatchmentEX-2: Subcat EX-2	Runoff Area=2.2 ac 9.09% Impervious Runoff Depth>1.97" Flow Length=639' Tc=8.9 min CN=79 Runoff=4.6 cfs 0.4 af
SubcatchmentEX-3: Subcat EX-3	Runoff Area=3.0 ac 16.98% Impervious Runoff Depth>1.89" Flow Length=823' Tc=13.8 min CN=78 Runoff=5.2 cfs 0.5 af
Link DP-1: Existing Wetland	Inflow=16.4 cfs 1.5 af Primary=16.4 cfs 1.5 af
Link DP-2: Existing Adjacent Swale	Inflow=4.6 cfs 0.4 af Primary=4.6 cfs 0.4 af
Link DP-3: Main Street Drainage System	Inflow=5.2 cfs 0.5 af Primary=5.2 cfs 0.5 af

Total Runoff Area = 14.4 ac Runoff Volume = 2.3 af Average Runoff Depth = 1.95" 90.12% Pervious = 13.0 ac 9.88% Impervious = 1.4 ac

Summary for Subcatchment EX-1: Subcat EX-1

Runoff = 16.4 cfs @ 12.20 hrs, Volume= 1.5 af, Depth> 1.97" Routed to Link DP-1 : Existing Wetland

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 5-Yr Rainfall=4.01"

Area (ad	c) CN	Descrip	otion									
2.	5 79	<50% (<50% Grass cover, Poor, HSG B									
2.	3 86	<50% (<50% Grass cover, Poor, HSG C									
0.	4 89	<50% (Grass cove	er, Poor, H	SG D							
0.	3 98	Paved	parking, H	SG B								
0.	1 98	Paved	parking, H	SG C								
0.	1 98	Paved	parking, H	SG D								
0.	2 98	Roofs,	HSG B									
0.	1 98	Roofs,	HSG C									
0.	0 98	Roofs,	HSG D									
0.	7 55	Woods	, Good, H	SG B								
1.	5 70	Woods	, Good, H	SG C								
1.	2 77	Woods	, Good, H	SG D								
9.	2 79	Weight	ed Averag	е								
8.	5	92.25%	6 Pervious	Area								
0.	7	7.75%	Imperviou	s Area								
_		-										
TC	Length	Slope	Velocity	Capacity	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cts)								
3.4	50	0.0740	0.25		Sheet Flow, Grass - Sheet							
					Grass: Short n= 0.150 P2= 3.10"							
10.8	950	0.0440	1.47		Shallow Concentrated Flow, Grass - Concentrated							
					Short Grass Pasture Kv= 7.0 fps							
14.2	1,000	Total										

Summary for Subcatchment EX-2: Subcat EX-2

Runoff = 4.6 cfs @ 12.13 hrs, Volume= 0.4 af, Depth> 1.97" Routed to Link DP-2 : Existing Adjacent Swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 5-Yr Rainfall=4.01"

Area (ac	c) CN	Descrip	otion								
0.8	8 68	<50% (50% Grass cover, Poor, HSG A								
1.	0 86	<50% (Grass cove	er, Poor, H	SG C						
0.2	2 98	Paved	parking, H	SG C							
0.	0 98	Roofs,	HSG C								
0.2	2 70	Woods	<u>, Good, H</u>	SG C							
2.2	2 79	Weight	ed Averag	е							
2.	0	90.91%	6 Pervious	Area							
0.3	2	9.09%	Imperviou	s Area							
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet						
					Grass: Short n= 0.150 P2= 3.10"						
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved Drive						
					Paved Kv= 20.3 fps						
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
8.9	639	Total									

Summary for Subcatchment EX-3: Subcat EX-3

Runoff = 5.2 cfs @ 12.19 hrs, Volume= 0.5 af, Depth> 1.89" Routed to Link DP-3 : Main Street Drainage System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 5-Yr Rainfall=4.01"

Area (ac) CN	Descri	otion									
1.3	3 79	<50%	Grass cove	er, Poor, H	SG B							
0.	5 86	<50%	50% Grass cover, Poor, HSG C									
0.3	3 98	Paved	parking, H	SG B								
0.1	1 98	Paved	parking, H	SG C								
0.1	1 98	Roofs,	HSG B									
0.0	6 55	Woods	, Good, H	SG B								
0.1	1 70	Woods	, Good, H	SG C								
3.0	0 78	Weight	ed Averag	е								
2.	5	83.02%	6 Pervious	Area								
0.	5	16.98%	6 Impervio	us Area								
_												
TC	Length	Slope	Velocity	Capacity	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
5.5	50	0.0220	0.15		Sheet Flow, Grass - Sheet							
					Grass: Short n= 0.150 P2= 3.10"							
8.3	773	0.0490	1.55		Shallow Concentrated Flow, Grass - Concentrated							
					Short Grass Pasture Kv= 7.0 fps							
13.8	823	Total										

Summary for Link DP-1: Existing Wetland

Inflow Area	a =	9.2 ac, 7	7.75% Impervi	ious, Inflow Depth	ו > 1.97	7" for 5-Yı	r event
Inflow	=	16.4 cfs @	2 12.20 hrs,	Volume=	1.5 af		
Primary	=	16.4 cfs @	12.20 hrs,	Volume=	1.5 af,	Atten= 0%,	Lag= 0.0 min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Are	a =	2.2 ac, 9	0.09% Impervious	, Inflow Depth >	1.97" for 5-Y	r event
Inflow	=	4.6 cfs @) 12.13 hrs, Vol	ume= 0.4	af	
Primary	=	4.6 cfs @) 12.13 hrs, Vol	ume= 0.4 :	af, Atten= 0%,	Lag= 0.0 min

Summary for Link DP-3: Main Street Drainage System

Inflow Are	a =	3.0 ac, 16.9	8% Impervious,	Inflow Depth >	1.89" for	5-Yr event
Inflow	=	5.2 cfs @	12.19 hrs, Volu	ume= 0.5	af	
Primary	=	5.2 cfs @	12.19 hrs, Volu	ıme= 0.5	af, Atten=	0%, Lag= 0.0 min

16694.00-EX	Type III 24-hr	10-Yr Rail	nfall=4.76"
Prepared by VHB, Inc		Printed	6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solution	is LLC		Page 27

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Subcat EX-1	Runoff Area=9.2 ac 7.75% Impervious Runoff Depth>2.59" Flow Length=1,000' Tc=14.2 min CN=79 Runoff=21.6 cfs 2.0 af
SubcatchmentEX-2: Subcat EX-2	Runoff Area=2.2 ac 9.09% Impervious Runoff Depth>2.59" Flow Length=639' Tc=8.9 min CN=79 Runoff=6.0 cfs 0.5 af
SubcatchmentEX-3: Subcat EX-3	Runoff Area=3.0 ac 16.98% Impervious Runoff Depth>2.50" Flow Length=823' Tc=13.8 min CN=78 Runoff=6.9 cfs 0.6 af
Link DP-1: Existing Wetland	Inflow=21.6 cfs 2.0 af Primary=21.6 cfs 2.0 af
Link DP-2: Existing Adjacent Swale	Inflow=6.0 cfs 0.5 af Primary=6.0 cfs 0.5 af
Link DP-3: Main Street Drainage System	Inflow=6.9 cfs 0.6 af Primary=6.9 cfs 0.6 af

Total Runoff Area = 14.4 ac Runoff Volume = 3.1 af Average Runoff Depth = 2.57" 90.12% Pervious = 13.0 ac 9.88% Impervious = 1.4 ac

Summary for Subcatchment EX-1: Subcat EX-1

Runoff = 21.6 cfs @ 12.20 hrs, Volume= 2.0 af, Depth> 2.59" Routed to Link DP-1 : Existing Wetland

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Yr Rainfall=4.76"

Area (ad	c) CN	Descrip	otion		
2.	5 79	<50% (Grass cove	er, Poor, H	SG B
2.	3 86	<50% (Grass cove	er, Poor, H	SG C
0.	4 89	<50% (Grass cove	er, Poor, H	SG D
0.	3 98	Paved	parking, H	SG B	
0.	1 98	Paved	parking, H	SG C	
0.	1 98	Paved	parking, H	SG D	
0.	2 98	Roofs,	HSG B		
0.	1 98	Roofs,	HSG C		
0.	0 98	Roofs,	HSG D		
0.	7 55	Woods	, Good, H	SG B	
1.	5 70	Woods	, Good, H	SG C	
1.	2 77	Woods	, Good, H	SG D	
9.	2 79	Weight	ed Averag	е	
8.	5	92.25%	6 Pervious	Area	
0.	7	7.75%	Imperviou	s Area	
_					
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.4	50	0.0740	0.25		Sheet Flow, Grass - Sheet
					Grass: Short n= 0.150 P2= 3.10"
10.8	950	0.0440	1.47		Shallow Concentrated Flow, Grass - Concentrated
					Short Grass Pasture Kv= 7.0 fps
14.2	1,000	Total			

Summary for Subcatchment EX-2: Subcat EX-2

Runoff = 6.0 cfs @ 12.13 hrs, Volume= 0.5 af, Depth> 2.59" Routed to Link DP-2 : Existing Adjacent Swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Yr Rainfall=4.76"

Area (ac) CN	Descrip	otion										
0.	8 68	<50% (Grass cove	er, Poor, H	SG A								
1.	0 86	<50% (0% Grass cover, Poor, HSG C										
0.1	2 98	Paved	parking, H	SG C									
0.	0 98	Roofs,	HSG C										
0.	2 70	Woods	, Good, H	SG C									
2.	2 79	Weight	ed Averag	е									
2.	0	90.91%	6 Pervious	Area									
0.	2	9.09%	Imperviou	s Area									
Tc	Length	Slope	Velocity	Capacity	Description								
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)									
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet								
					Grass: Short n= 0.150 P2= 3.10"								
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated								
					Short Grass Pasture Kv= 7.0 fps								
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved Drive								
					Paved Kv= 20.3 fps								
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated								
					Short Grass Pasture Kv= 7.0 fps								
8.9	639	Total											

Summary for Subcatchment EX-3: Subcat EX-3

Runoff = 6.9 cfs @ 12.19 hrs, Volume= 0.6 af, Depth> 2.50" Routed to Link DP-3 : Main Street Drainage System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Yr Rainfall=4.76"

50% Grass cover, Poor, HSG C										
0"										
rass - Concentrated										
S										

Summary for Link DP-1: Existing Wetland

Inflow Area	ı =	9.2 ac,	7.75	5% Impervi	ious,	Inflow	Depth	> 2.5	9" for	10-`	Yr event	
Inflow	=	21.6 cfs (@ `	12.20 hrs,	Volu	me=	2	2.0 af				
Primary	=	21.6 cfs (@ `	12.20 hrs,	Volu	me=	2	2.0 af,	Atten=	0%,	Lag= 0	.0 min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	a =	2.2 ac,	9.09	% Impervi	ious,	Inflow	Depth >	> 2.5	9" for	י-10	r event	t
Inflow	=	6.0 cfs	@ 1	12.13 hrs,	Volu	me=	0	.5 af				
Primary	=	6.0 cfs	@ 1	l2.13 hrs,	Volu	me=	0	.5 af,	Atten=	0%,	Lag= 0	.0 min

Summary for Link DP-3: Main Street Drainage System

Inflow Area	ı =	3.0 ac,	16.98	3% Impervi	ious,	Inflow	Depth >	> 2.5	0" for	10-\	/r ever	nt
Inflow	=	6.9 cfs	@	12.19 hrs,	Volu	me=	0	.6 af				
Primary	=	6.9 cfs	@	12.19 hrs,	Volu	me=	0	.6 af,	Atten=	0%,	Lag=	0.0 min
16694.00-EX	Type III 24-hr	25-Yr Rai	nfall=5.80"									
---	----------------	-----------	-------------									
Prepared by VHB, Inc		Printed	6/19/2025									
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions	s LLC		Page 34									

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Subcat EX-1	Runoff Area=9.2 ac 7.75% Impervious Runoff Depth>3.49" Flow Length=1,000' Tc=14.2 min CN=79 Runoff=29.2 cfs 2.7 af
SubcatchmentEX-2: Subcat EX-2	Runoff Area=2.2 ac 9.09% Impervious Runoff Depth>3.50" Flow Length=639' Tc=8.9 min CN=79 Runoff=8.1 cfs 0.6 af
SubcatchmentEX-3: Subcat EX-3	Runoff Area=3.0 ac 16.98% Impervious Runoff Depth>3.39" Flow Length=823' Tc=13.8 min CN=78 Runoff=9.4 cfs 0.9 af
Link DP-1: Existing Wetland	Inflow=29.2 cfs 2.7 af Primary=29.2 cfs 2.7 af
Link DP-2: Existing Adjacent Swale	Inflow=8.1 cfs 0.6 af Primary=8.1 cfs 0.6 af
Link DP-3: Main Street Drainage System	Inflow=9.4 cfs 0.9 af Primary=9.4 cfs 0.9 af

Total Runoff Area = 14.4 ac Runoff Volume = 4.2 af Average Runoff Depth = 3.47" 90.12% Pervious = 13.0 ac 9.88% Impervious = 1.4 ac

Summary for Subcatchment EX-1: Subcat EX-1

Runoff = 29.2 cfs @ 12.19 hrs, Volume= 2.7 af, Depth> 3.49" Routed to Link DP-1 : Existing Wetland

Area (ad	c) CN	Descrip	otion								
2.	5 79	<50% (Grass cove	er, Poor, H	SG B						
2.	3 86	<50% (Grass cove	er, Poor, H	SG C						
0.	4 89	<50% (Grass cove	er, Poor, H	SG D						
0.	3 98	Paved	aved parking, HSG B								
0.	1 98	Paved	aved parking, HSG C								
0.	1 98	Paved	parking, H	ISG D							
0.	2 98	Roofs,	HSG B								
0.	1 98	Roofs,	HSG C								
0.	0 98	Roofs,	HSG D								
0.	7 55	Woods	, Good, H	SG B							
1.	5 70	Woods	, Good, H	SG C							
1.	2 77	Woods	, Good, H	SG D							
9.	2 79	Weight	ed Averag	e							
8.	5	92.25%	6 Pervious	Area							
0.	7	7.75%	Imperviou	s Area							
_				_							
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
3.4	50	0.0740	0.25		Sheet Flow, Grass - Sheet						
					Grass: Short n= 0.150 P2= 3.10"						
10.8	950	0.0440	1.47		Shallow Concentrated Flow, Grass - Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
14.2	1,000	Total									

Summary for Subcatchment EX-2: Subcat EX-2

Runoff = 8.1 cfs @ 12.13 hrs, Volume= 0.6 af, Depth> 3.50" Routed to Link DP-2 : Existing Adjacent Swale

Area (ac) CN	Descrip	otion							
0.8	8 68	<50% (50% Grass cover, Poor, HSG A							
1.0	0 86	<50% (Grass cove	er, Poor, H	SG C					
0.2	2 98	Paved	parking, H	SG C						
0.0	0 98	Roofs,	HSG C							
0.2	2 70	Woods	, Good, HS	SG C						
2.2	2 79	Weight	ed Averag	е						
2.0	0	90.91%	6 Pervious	Area						
0.2	2	9.09%	Imperviou	s Area						
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet					
					Grass: Short n= 0.150 P2= 3.10"					
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated					
					Short Grass Pasture Kv= 7.0 fps					
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved Drive					
					Paved Kv= 20.3 fps					
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated					
					Short Grass Pasture Kv= 7.0 fps					
8.9	639	Total								

Summary for Subcatchment EX-3: Subcat EX-3

Runoff = 9.4 cfs @ 12.19 hrs, Volume= 0.9 af, Depth> 3.39" Routed to Link DP-3 : Main Street Drainage System

Area (ac	;) CN	Descrip	otion							
1.3	3 79	<50% (Grass cove	er, Poor, H	SG B					
0.	5 86	<50% (0% Grass cover, Poor, HSG C							
0.3	3 98	Paved	aved parking, HSG B							
0.	1 98	Paved	aved parking, HSG C							
0.	1 98	Roofs,	HSG B							
0.	6 55	Woods	, Good, H	SG B						
0.	1 70	Woods	<u>, Good, H</u>	SG C						
3.	0 78	Weight	Neighted Average							
2.	5	83.02%	6 Pervious	Area						
0.	5	16.98%	6 Impervio	us Area						
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.5	50	0.0220	0.15		Sheet Flow, Grass - Sheet					
					Grass: Short n= 0.150 P2= 3.10"					
8.3	773	0.0490	1.55		Shallow Concentrated Flow, Grass - Concentrated					
					Short Grass Pasture Kv= 7.0 fps					
13.8	823	Total								

Summary for Link DP-1: Existing Wetland

Inflow Area	ı =	9.2 ac,	7.75	% Imperv	vious,	Inflow	Depth 3	> 3.4	9" for	25-`	Yr even	t
Inflow	=	29.2 cfs	@ 1	2.19 hrs,	Volu	ime=	2	2.7 af				
Primary	=	29.2 cfs	@ 1	2.19 hrs,	Volu	ime=	2	2.7 af,	Atten=	0%,	Lag= (0.0 min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	a =	2.2 ac, 🧐	9.09%	Impervi	ous,	Inflow	Depth	> 3.5	0" for	25-`	r event	
Inflow	=	8.1 cfs @	@ 12.	13 hrs,	Volu	me=	Ċ).6 af				
Primary	=	8.1 cfs @	ā) 12.	13 hrs,	Volu	me=	C).6 af,	Atten=	0%,	Lag= 0.	0 min

Summary for Link DP-3: Main Street Drainage System

Inflow Area	a =	3.0 ac,	16.98	3% Impervi	ious,	Inflow	Depth >	> 3.3	9" for	25-\	r event	t
Inflow	=	9.4 cfs	@	12.19 hrs,	Volu	me=	0	.9 af				
Primary	=	9.4 cfs	@	12.19 hrs,	Volu	me=	0	.9 af,	Atten=	0%,	Lag= 0	.0 min

16694.00-EX	Type III 24-hr	100-Yr Raii	nfall=7.39"
Prepared by VHB, Inc		Printed	6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solution	ons LLC		Page 41

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Subcat EX-1	Runoff Area=9.2 ac 7.75% Impervious Runoff Depth>4.93" Flow Length=1,000' Tc=14.2 min CN=79 Runoff=41.0 cfs 3.8 af
SubcatchmentEX-2: Subcat EX-2	Runoff Area=2.2 ac 9.09% Impervious Runoff Depth>4.94" Flow Length=639' Tc=8.9 min CN=79 Runoff=11.4 cfs 0.9 af
SubcatchmentEX-3: Subcat EX-3	Runoff Area=3.0 ac 16.98% Impervious Runoff Depth>4.82" Flow Length=823' Tc=13.8 min CN=78 Runoff=13.2 cfs 1.2 af
Link DP-1: Existing Wetland	Inflow=41.0 cfs 3.8 af Primary=41.0 cfs 3.8 af
Link DP-2: Existing Adjacent Swale	Inflow=11.4 cfs 0.9 af Primary=11.4 cfs 0.9 af
Link DP-3: Main Street Drainage System	Inflow=13.2 cfs 1.2 af Primary=13.2 cfs 1.2 af

Total Runoff Area = 14.4 ac Runoff Volume = 5.9 af Average Runoff Depth = 4.91" 90.12% Pervious = 13.0 ac 9.88% Impervious = 1.4 ac

Summary for Subcatchment EX-1: Subcat EX-1

Runoff = 41.0 cfs @ 12.19 hrs, Volume= 3.8 af, Depth> 4.93" Routed to Link DP-1 : Existing Wetland

Area (ad	c) CN	Descrip	otion							
2.	5 79	<50% (Grass cove	er, Poor, H	SG B					
2.	3 86	<50% (Grass cove	er, Poor, HS	SG C					
0.	4 89	<50% (0% Grass cover, Poor, HSG D							
0.	3 98	Paved	aved parking, HSG B							
0.	1 98	Paved	aved parking, HSG C							
0.	1 98	Paved	parking, H	SG D						
0.	2 98	Roofs,	HSG B							
0.	1 98	Roofs,	HSG C							
0.	0 98	Roofs,	HSG D							
0.	7 55	Woods	, Good, H	SG B						
1.	5 70	Woods	, Good, H	SG C						
1.	2 77	Woods	<u>, Good, H</u>	SG D						
9.	2 79	Weight	ed Averag	е						
8.	5	92.25%	Pervious	Area						
0.	7	7.75%	Imperviou	s Area						
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
3.4	50	0.0740	0.25		Sheet Flow, Grass - Sheet					
					Grass: Short n= 0.150 P2= 3.10"					
10.8	950	0.0440	1.47		Shallow Concentrated Flow, Grass - Concentrated					
					Short Grass Pasture Kv= 7.0 fps					
14.2	1,000	Total								

Summary for Subcatchment EX-2: Subcat EX-2

Runoff = 11.4 cfs @ 12.12 hrs, Volume= 0.9 af, Depth> 4.94" Routed to Link DP-2 : Existing Adjacent Swale

Area (ac	c) CN	Descrip	otion							
0.8	8 68	<50% (50% Grass cover, Poor, HSG A							
1.	0 86	<50% (Grass cove	er, Poor, H	SG C					
0.2	2 98	Paved	parking, H	SG C						
0.	0 98	Roofs,	HSG C							
0.2	2 70	Woods	<u>, Good, H</u>	SG C						
2.2	2 79	Weight	ed Averag	е						
2.	0	90.91%	6 Pervious	Area						
0.2	2	9.09%	Imperviou	s Area						
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet					
					Grass: Short n= 0.150 P2= 3.10"					
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated					
					Short Grass Pasture Kv= 7.0 fps					
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved Drive					
					Paved Kv= 20.3 fps					
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated					
					Short Grass Pasture Kv= 7.0 fps					
8.9	639	Total								

Summary for Subcatchment EX-3: Subcat EX-3

Runoff = 13.2 cfs @ 12.19 hrs, Volume= 1.2 af, Depth> 4.82" Routed to Link DP-3 : Main Street Drainage System

Area (ac) CN	Descri	otion						
1.3	3 79	<50%	50% Grass cover, Poor, HSG B						
0.	5 86	<50%	Grass cove	er, Poor, H	SG C				
0.3	3 98	Paved	parking, H	SG B					
0.1	1 98	Paved	parking, H	SG C					
0.1	1 98	Roofs,	HSG B						
0.0	6 55	Woods	, Good, H	SG B					
0.1	1 70	Woods	<u>, Good, H</u>	SG C					
3.0	0 78	Weight	Weighted Average						
2.	5	83.02%	6 Pervious	Area					
0.	5	16.98%	6 Impervio	us Area					
_									
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.5	50	0.0220	0.15		Sheet Flow, Grass - Sheet				
					Grass: Short n= 0.150 P2= 3.10"				
8.3	773	0.0490	1.55		Shallow Concentrated Flow, Grass - Concentrated				
					Short Grass Pasture Kv= 7.0 fps				
13.8	823	Total							

Summary for Link DP-1: Existing Wetland

Inflow Area	ı =	9.2 ac,	7.75	% Imperv	ious,	Inflow	Depth >	• 4.9	3" for	100	-Yr eve	nt
Inflow	=	41.0 cfs	@ 1	2.19 hrs,	Volu	me=	3	.8 af				
Primary	=	41.0 cfs	@ 1	2.19 hrs,	Volu	me=	3	.8 af,	Atten=	0%,	Lag= (0.0 min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	=	2.2 ac,	9.09	9% Imperv	ious,	Inflow	Depth >	4.9	4" for	100	-Yr even	ıt
Inflow	=	11.4 cfs	@	12.12 hrs,	Volu	me=	0.	9 af				
Primary	=	11.4 cfs	<u>@</u>	12.12 hrs,	Volu	me=	0.	9 af,	Atten=	0%,	Lag= 0.	0 min

Summary for Link DP-3: Main Street Drainage System

Inflow Area	a =	3.0 ac, 1	16.98%	Impervi	ous,	Inflow	Depth >	4.8	2" for	100	-Yr ev	ent
Inflow	=	13.2 cfs	@ 12.	19 hrs,	Volu	me=	1.	2 af				
Primary	=	13.2 cfs	@ 12.	19 hrs,	Volu	me=	1.	2 af,	Atten=	0%,	Lag=	0.0 min

16694.00-PR

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Yr	Type III 24-hr		Default	24.00	1	2.55	2
2	2-Yr	Type III 24-hr		Default	24.00	1	3.10	2
3	5-Yr	Type III 24-hr		Default	24.00	1	4.01	2
4	10-Yr	Type III 24-hr		Default	24.00	1	4.76	2
5	25-Yr	Type III 24-hr		Default	24.00	1	5.80	2
6	100-Yr	Type III 24-hr		Default	24.00	1	7.39	2

Rainfall Events Listing

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.6	68	<50% Grass cover, Poor, HSG A (PR-2A, PR-2B, PR-3)
3.9	79	<50% Grass cover, Poor, HSG B (PR-1B)
3.0	86	<50% Grass cover, Poor, HSG C (PR-1A, PR-1B, PR-2A, PR-2B, PR-2C, PR-3)
0.6	89	<50% Grass cover, Poor, HSG D (PR-1B, PR-2B)
0.0	98	Paved parking, HSG A (PR-2B, PR-3)
0.5	98	Paved parking, HSG B (PR-1B)
2.3	98	Paved parking, HSG C (PR-1A, PR-1B, PR-2B, PR-3)
0.1	98	Paved parking, HSG D (PR-1B, PR-2B)
0.2	98	Roofs, HSG B (PR-1B)
0.8	98	Roofs, HSG C (PR-2B, PR-2C)
0.0	98	Roofs, HSG D (PR-1B)
1.2	55	Woods, Good, HSG B (PR-1B)
0.1	70	Woods, Good, HSG C (PR-1B)
1.0	77	Woods, Good, HSG D (PR-1B, PR-2B)
14.4	83	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.7	HSG A	PR-2A, PR-2B, PR-3
5.8	HSG B	PR-1B
6.2	HSG C	PR-1A, PR-1B, PR-2A, PR-2B, PR-2C, PR-3
1.7	HSG D	PR-1B, PR-2B
0.0	Other	
14.4		TOTAL AREA

16694.00-PR

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.6	3.9	3.0	0.6	0.0	8.1	<50% Grass cover, Poor	PR-1A, PR-1B, PR-2A,
							PR-2B, PR-2C, PR-3
0.0	0.5	2.3	0.1	0.0	2.8	Paved parking	PR-1A, PR-1B, PR-2B,
							PR-3
0.0	0.2	0.8	0.0	0.0	1.1	Roofs	PR-1B, PR-2B, PR-2C
0.0	1.2	0.1	1.0	0.0	2.3	Woods, Good	PR-1B, PR-2B
0.7	5.8	6.2	1.7	0.0	14.4	TOTAL AREA	

Ground Covers (all nodes)

16694.00-PR	Type III 24-hr 1-Yr Rainfall=2.55"
Prepared by VHB, Inc	Printed 6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions LLC	C Page 6

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-1A: Direct Runoff to	Runoff Area=0.7 ac 10.72% Impervious Runoff Depth>1.35" Tc=5.0 min CN=87 Runoff=1.1 cfs 0.1 af
SubcatchmentPR-1B: Off-Site Area to the	Runoff Area=7.7 ac 9.91% Impervious Runoff Depth>0.82" Flow Length=740' Tc=11.3 min CN=78 Runoff=5.8 cfs 0.5 af
SubcatchmentPR-2A: Overland Flow	Runoff Area=0.2 ac 0.00% Impervious Runoff Depth>0.44" Flow Length=639' Tc=8.9 min CN=69 Runoff=0.1 cfs 0.0 af
SubcatchmentPR-2B: Parking Lot	Runoff Area=4.6 ac 48.77% Impervious Runoff Depth>1.50" Tc=5.0 min CN=89 Runoff=8.4 cfs 0.6 af
SubcatchmentPR-2C: Proposed Building	Runoff Area=0.8 ac 100.00% Impervious Runoff Depth>2.32" Tc=5.0 min CN=98 Runoff=2.0 cfs 0.2 af
SubcatchmentPR-3: Main St. Overland Flow	✔ Runoff Area=0.4 ac 8.03% Impervious Runoff Depth>1.35" Tc=5.0 min CN=87 Runoff=0.6 cfs 0.0 af
Pond 1P: Infiltration Basin #1P Discarde	Peak Elev=218.0' Storage=9,325 cf Inflow=10.4 cfs 0.7 af d=1.8 cfs 0.7 af Primary=0.0 cfs 0.0 af Outflow=1.8 cfs 0.7 af
Link DP-1: Existing Wetland	Inflow=6.5 cfs 0.6 af Primary=6.5 cfs 0.6 af
Link DP-2: Existing Adjacent Swale	Inflow=0.1 cfs 0.0 af Primary=0.1 cfs 0.0 af
Link DP-3: Main Street Drainage System	Inflow=0.6 cfs 0.0 af Primary=0.6 cfs 0.0 af

Total Runoff Area = 14.4 acRunoff Volume = 1.4 afAverage Runoff Depth = 1.15"72.75% Pervious = 10.5 ac27.25% Impervious = 3.9 ac

Summary for Subcatchment PR-1A: Direct Runoff to Wetland

Runoff = 1.1 cfs @ 12.08 hrs, Volume= 0.1 af, Depth> 1.35" Routed to Link DP-1 : Existing Wetland

Area (ac)	CN	Description					
0.6	86	<50% Grass cover, Poor, HSG C					
0.1	98	Paved parking, HSG C					
0.7	87	Veighted Average					
0.6		89.28% Pervious Area					
0.1		10.72% Impervious Area					
Tc Le (min)	ength (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)					
5.0		Direct Entry,					

Summary for Subcatchment PR-1B: Off-Site Area to the South

Runoff = 5.8 cfs @ 12.17 hrs, Volume= 0.5 af, Depth> 0.82" Routed to Link DP-1 : Existing Wetland

Area (ac) CN	Descrip	otion							
3.9	9 79	<50% (<50% Grass cover, Poor, HSG B							
1.0) 86	<50% (50% Grass cover, Poor, HSG C							
0.3	3 89	<50% (50% Grass cover, Poor, HSG D							
0.5	5 98	Paved	aved parking, HSG B							
0.0) 98	Paved	parking, H	ISG C						
0.0) 98	Paved	parking, H	ISG D						
0.2	2 98	Roofs,	HSG B							
0.0) 98	Roofs,	HSG D							
1.2	2 55	Woods	, Good, H	SG B						
0.1	1 70	Woods	, Good, H	SG C						
0.4	4 77	Woods	, Good, H	SG D						
7.7	7 78	Weight	ed Averag	e						
6.9	9	90.09%	6 Pervious	Area						
0.8	3	9.91%	Imperviou	s Area						
-		~		A B						
	Length	Slope	Velocity	Capacity	Description					
(min)	(teet)	(π/π)	(IT/SEC)	(CTS)						
4.3	50	0.0400	0.19		Sheet Flow, Grass-Sheet					
0.4	454	0 0000	4.04		Grass: Short n= 0.150 P2= 3.10"					
Z.1	154	0.0300	1.21		Shallow Concentrated Flow, Grass-Concentrated					
1.0	110	0.0160	2 5 7		Shollow Concentrated Flow, Reved Concentrated					
1.0	140	0.0100	2.57		Payed Ky= 20.3 fps					
13	116	0 0470	1 52		Shallow Concentrated Flow Grass-Concentrated					
1.5	110	0.0470	1.52		Short Grass Pasture Ky= 7.0 fps					
0.5	50	0.0600	1 71		Shallow Concentrated Flow Grass-Concentrated					
0.0	00	0.0000	1.7 1		Short Grass Pasture Kv= 7.0 fps					
0.5	55	0.0720	1.88		Shallow Concentrated Flow, Grass-Concentrated					
0.0		0.01.20			Short Grass Pasture Kv= 7.0 fps					
0.1	17	0.1170	2.39		Shallow Concentrated Flow, Grass-Concentrated					
					Short Grass Pasture Kv= 7.0 fps					
0.5	40	0.0375	1.36		Shallow Concentrated Flow, Grass-Concentrated					
					Short Grass Pasture Kv= 7.0 fps					
1.0	110	0.0670	1.81		Shallow Concentrated Flow, Grass-Concentrated					
					Short Grass Pasture Kv= 7.0 fps					
11.3	740	Total								

Summary for Subcatchment PR-2A: Overland Flow

Runoff = 0.1 cfs @ 12.16 hrs, Volume= 0.0 af, Depth> 0.44" Routed to Link DP-2 : Existing Adjacent Swale

Area (ad	CN (C	Descrip	otion								
0.	2 68	<50% (Grass cove	er, Poor, HS	SG A						
0.	0 86	<50% (50% Grass cover, Poor, HSG C								
0.	2 69	Weight	ed Averag	е							
0.	2	100.00	% Perviou	s Area							
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet						
					Grass: Short n= 0.150 P2= 3.10"						
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved						
					Paved Kv= 20.3 fps						
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
8.9	639	Total									

Summary for Subcatchment PR-2B: Parking Lot

Runoff = 8.4 cfs @ 12.07 hrs, Volume= 0.6 af, Depth> 1.50" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description
0.4	68	<50% Grass cover, Poor, HSG A
1.0	86	<50% Grass cover, Poor, HSG C
0.2	89	<50% Grass cover, Poor, HSG D
0.0	98	Paved parking, HSG A
2.2	98	Paved parking, HSG C
0.0	98	Paved parking, HSG D
0.1	98	Roofs, HSG C
0.7	77	Woods, Good, HSG D
4.6	89	Weighted Average
2.4		51.23% Pervious Area
2.3		48.77% Impervious Area
Tc L	ength	Slope Velocity Capacity Description
(min)	(feet)	(ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Summary for Subcatchment PR-2C: Proposed Building

Runoff = 2.0 cfs @ 12.07 hrs, Volume= 0.2 af, Depth> 2.32" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description						
0.0	86	<50% Grass cover, Poor, HSG C						
0.8	98	Roofs, HSG C						
0.8	98	Weighted Average						
0.0		0.00% Pervious Area						
0.8		100.00% Impervious Area						
Tc Le (min) (ength (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)						
5.0		Direct Entry,						

Summary for Subcatchment PR-3: Main St. Overland Flow

Runoff = 0.6 cfs @ 12.08 hrs, Volume= 0.0 af, Depth> 1.35" Routed to Link DP-3 : Main Street Drainage System

Area (ac	;)	CN	Descrip	tion					
0.0	0	68	<50% G	Grass cove	er, Poor, HS	ISG A			
0.3	3	86	<50% G	Grass cove	er, Poor, HS	ISG C			
0.0	0	98	Paved p	barking, H	SG A				
0.0	0	98	Paved p	barking, H	SG C				
0.4	4	87	Weighte	Weighted Average					
0.3	3		91.97%	Pervious	Area				
0.0	0		8.03% l	mpervious	s Area				
Tc	Ler	ngth	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(f	eet)	(ft/ft)	(ft/sec)	(cfs)				
5.0						Direct Entry,			

Summary for Pond 1P: Infiltration Basin #1P

Inflow Area = Inflow = Outflow = Discarded = Primary = Routed to	5.4 ac 10.4 c 1.8 c 1.8 c 0.0 c Link DP-2 : I	c, 56.19% lm fs @ 12.07 fs @ 12.54 fs @ 12.54 fs @ 0.00 Existing Adja	perviou hrs, Vo hrs, Vo hrs, Vo hrs, Vo cent Sw	s, Inflow D blume= blume= blume= blume= vale	epth > 1.62 0.7 af 0.7 af, 0.7 af 0.7 af 0.0 af	2" for 1-Yr Atten= 83%,	event Lag= 28.1 mir	1
Routing by S Peak Elev= 2	tor-Ind metho 218.0' @ 12.5	od, Time Spa 4 hrs Surf.A	n= 0.00 \rea= 9,	-24.00 hrs, 191 sf Sto	dt= 0.03 hrs rage= 9,325	cf		
Plug-Flow de Center-of-Ma	etention time= ass det. time=	36.4 min cal 35.8 min (8	culated 42.6 - 8	for 0.7 af (* 06.8)	100% of inflo	ow)		
Volume	Invert A	vail.Storage	Stora	ge Descript	ion			
#1	217.0'	1,428 cf	Sedir	nent Foreb	ay (Prismat	t ic) Listed be	low (Recalc) -In	npervious
#2	217.0'	56,735 cf	Infiltr	ation Biore	etention Bas	sin (Irregula	ar)_isted below (Recalc)
		58,162 cf	Total	Available S	torage			
Elevation	Surf.Are	ea In	c.Store	Cum	Store			
(feet)	-(sq-	ft) (cub	ic-feet)	(cubic	c-feet)			
217.0	38	33	0		0			
218.0	69	96	540		540			
219.0	1,08	30	888		1,428			
Flevation	Surf Are	ea Perim		Inc Store	Cum S	Store	Wet Area	
(feet)	(sq-	ft) (feet)	(cubic-feet)	(cubic-	-feet)	(sq-ft)	
217.0	7,87	72 372.6		0		0	7,872	
218.0	9,15	53 403.9		8,504	8	3,504	9,845	
219.0	10,52	27 435.2		9,832	18	3,336	11,976	
220.0	11,99	95 466.5		11,253	29	9,589	14,267	
221.0	13,55	57 497.8		12,768	42	2,358	16,717	
222.0	15,27	13 529.1		14,377	56	5,735	19,326	
Device Rou	uting	Invert Out	let Devi	ces				
#1 Prir	mary	220.6' 20. Hea 4.0 Coe 2.64	D' long ad (feet) 4.5 5.0 ef. (Eng 4 2.65	x 8.0' brea 0.2 0.4 0 0 5.5 lish) 2.43 2 2.65 2.66	dth Broad- 0.6 0.8 1.0 2.54 2.70 2 2.66 2.68 2	Crested Re 1.2 1.4 1.6 .69 2.68 2. 2.70 2.74	ctangular Weir 1.8 2.0 2.5 3 68 2.66 2.64	3.0 3.5 2.64
#2 Dis		217.0' 8.2	70 in/hr	Exfiltratio	n over Surf	ace area		

Discarded OutFlow Max=1.8 cfs @ 12.54 hrs HW=218.0' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.8 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=217.0' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

Summary for Link DP-1: Existing Wetland

Inflow Area	ı =	8.4 ac,	9.98	3% Impervi	ous,	Inflow	Depth >	· 0.8	6" for	1-Yr	event	
Inflow	=	6.5 cfs	@	12.16 hrs,	Volu	me=	0.	6 af				
Primary	=	6.5 cfs	@	12.16 hrs,	Volu	me=	0.	6 af,	Atten= 0)%,	Lag= 0.0) min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	a =	5.6 ac, 5	4.05% Im	pervious,	Inflow	Depth >	0.02	2" for 1-Y	r event	
Inflow	=	0.1 cfs (@ 12.16	hrs, Volu	ume=	0.0	af			
Primary	=	0.1 cfs (ā) 12.16	hrs, Volu	ume=	0.0	af,	Atten= 0%,	Lag= 0.0 m	in

Summary for Link DP-3: Main Street Drainage System

Inflow Area	a =	0.4 ac,	8.0	3% Impervi	ious,	Inflow	Depth	> 1	.35"	for	1-Yr	⁻ even	t
Inflow	=	0.6 cfs	@	12.08 hrs,	Volu	me=		0.0 a	f				
Primary	=	0.6 cfs	@	12.08 hrs,	Volu	me=		0.0 a	f, A	tten=	0%,	Lag=	0.0 min

16694.00-PR	Type III 24-hr 2-Yr Rainfall=3.10"
Prepared by VHB, Inc	Printed 6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions LLC	Page 17

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-1A: Direct Runoff to	Runoff Area=0.7 ac 10.72% Impervious Runoff Depth>1.83" Tc=5.0 min CN=87 Runoff=1.5 cfs 0.1 af
SubcatchmentPR-1B: Off-Site Area to the	Runoff Area=7.7 ac 9.91% Impervious Runoff Depth>1.20" Flow Length=740' Tc=11.3 min CN=78 Runoff=8.8 cfs 0.8 af
SubcatchmentPR-2A: Overland Flow	Runoff Area=0.2 ac 0.00% Impervious Runoff Depth>0.72" Flow Length=639' Tc=8.9 min CN=69 Runoff=0.1 cfs 0.0 af
SubcatchmentPR-2B: Parking Lot	Runoff Area=4.6 ac 48.77% Impervious Runoff Depth>1.99" Tc=5.0 min CN=89 Runoff=11.1 cfs 0.8 af
SubcatchmentPR-2C: Proposed Building	Runoff Area=0.8 ac 100.00% Impervious Runoff Depth>2.87" Tc=5.0 min CN=98 Runoff=2.4 cfs 0.2 af
SubcatchmentPR-3: Main St. Overland Flo	W Runoff Area=0.4 ac 8.03% Impervious Runoff Depth>1.83" Tc=5.0 min CN=87 Runoff=0.8 cfs 0.1 af
Pond 1P: Infiltration Basin #1P Discard	Peak Elev=218.4' Storage=13,572 cf Inflow=13.5 cfs 1.0 af ed=1.9 cfs 1.0 af Primary=0.0 cfs 0.0 af Outflow=1.9 cfs 1.0 af
Link DP-1: Existing Wetland	Inflow=9.8 cfs 0.9 af Primary=9.8 cfs 0.9 af
Link DP-2: Existing Adjacent Swale	Inflow=0.1 cfs 0.0 af Primary=0.1 cfs 0.0 af
Link DP-3: Main Street Drainage System	Inflow=0.8 cfs 0.1 af Primary=0.8 cfs 0.1 af

Total Runoff Area = 14.4 acRunoff Volume = 1.9 afAverage Runoff Depth = 1.58"72.75% Pervious = 10.5 ac27.25% Impervious = 3.9 ac

Summary for Subcatchment PR-1A: Direct Runoff to Wetland

Runoff = 1.5 cfs @ 12.07 hrs, Volume= 0.1 af, Depth> 1.83" Routed to Link DP-1 : Existing Wetland

Area (ac)	CN	Description					
0.6	86	<50% Grass cover, Poor, HSG C					
0.1	98	Paved parking, HSG C					
0.7	87	Weighted Average					
0.6		89.28% Pervious Area					
0.1		10.72% Impervious Area					
Tc Le (min) (ength (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)					
5.0		Direct Entry,					

Summary for Subcatchment PR-1B: Off-Site Area to the South

Runoff = 8.8 cfs @ 12.16 hrs, Volume= 0.8 af, Depth> 1.20" Routed to Link DP-1 : Existing Wetland

Area (ac)) CN	Descrip	otion								
3.9	9 79	<50% (Grass cove	er, Poor, H	SG B						
1.0) 86	<50% (<50% Grass cover, Poor, HSG C								
0.3	8 89	<50% (50% Grass cover, Poor, HSG D								
0.5	5 98	Paved	parking, H	ISG B							
0.0) 98	Paved	parking, H	ISG C							
0.0) 98	Paved	parking, H	ISG D							
0.2	2 98	Roofs,	HSG B								
0.0	98	Roofs,	HSG D								
1.2	2 55	Woods	, Good, H	SGB							
0.1		VVoods	, Good, H	SGC							
0.4		VVOOds	<u>, Good, H</u>	SGD							
1.1	y 78	Weight	ed Averag	le Ana a							
6.5	<i>)</i>	90.09%		Area							
0.8)	9.91%	Imperviou	s Area							
Тс	l onath	Slone	Velocity	Canacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description						
4 3	<u></u> 50	0.0400	0.19	(010)	Sheet Flow Grass-Sheet						
7.0	50	0.0400	0.15		Grass Short $n=0.150$ P2= 3.10"						
2.1	154	0.0300	1.21		Shallow Concentrated Flow, Grass-Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
1.0	148	0.0160	2.57		Shallow Concentrated Flow, Paved-Concentrated						
					Paved Kv= 20.3 fps						
1.3	116	0.0470	1.52		Shallow Concentrated Flow, Grass-Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
0.5	50	0.0600	1.71		Shallow Concentrated Flow, Grass-Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
0.5	55	0.0720	1.88		Shallow Concentrated Flow, Grass-Concentrated						
.		o 4 4 - o			Short Grass Pasture Kv= 7.0 tps						
0.1	17	0.1170	2.39		Shallow Concentrated Flow, Grass-Concentrated						
0.5	40	0.0075	4.00		Short Grass Pasture KV= 7.0 fps						
0.5	40	0.0375	1.30		Shallow Concentrated Flow, Grass-Concentrated						
10	110	0.0670	1 81		Shallow Concentrated Flow, Grass Concentrated						
1.0	110	0.0070	1.01		Short Grass Pasture Ky= 7.0 fps						
11 2	740	Total									
11.5	140	illai									

Summary for Subcatchment PR-2A: Overland Flow

Runoff = 0.1 cfs @ 12.14 hrs, Volume= 0.0 af, Depth> 0.72" Routed to Link DP-2 : Existing Adjacent Swale

Area (ad	CN (CN	Descrip	otion					
0.2 68 <50% Grass cover, Poor,		er, Poor, H	SG A					
0.0 86 <		<50% (<50% Grass cover, Poor, HSG C					
0.2 6		Weighted Average						
0.2		100.00% Pervious Area						
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet			
					Grass: Short n= 0.150 P2= 3.10"			
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated			
					Short Grass Pasture Kv= 7.0 fps			
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved			
					Paved Kv= 20.3 fps			
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated			
					Short Grass Pasture Kv= 7.0 fps			
8.9	639	Total						

Summary for Subcatchment PR-2B: Parking Lot

Runoff = 11.1 cfs @ 12.07 hrs, Volume= 0.8 af, Depth> 1.99" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description					
0.4	68	<50% Grass cover, Poor, HSG A					
1.0	86	<50% Grass cover, Poor, HSG C					
0.2	89	<50% Grass cover, Poor, HSG D					
0.0	98	Paved parking, HSG A					
2.2	98	Paved parking, HSG C					
0.0	98	Paved parking, HSG D					
0.1	98	Roofs, HSG C					
0.7	77	Woods, Good, HSG D					
4.6	89	Weighted Average					
2.4		51.23% Pervious Area					
2.3		48.77% Impervious Area					
IC L	(foot)	(ff/ff) (ff/coc) (ofc)					
(mm)	(leet)						
5.0		Direct Entry,					

Summary for Subcatchment PR-2C: Proposed Building

Runoff = 2.4 cfs @ 12.07 hrs, Volume= 0.2 af, Depth> 2.87" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description					
0.0 86		<50% Grass cover, Poor, HSG C					
0.8 98		Roofs, HSG C					
0.8	98	Weighted Ave	erage				
0.0		0.00% Pervious Area					
0.8		100.00% Impervious Area					
Tc L (min)	.ength (feet)	Slope Veloo (ft/ft) (ft/so	city Capacity ec) (cfs)	Description			
5.0				Direct Entry,			
Summary for Subcatchment PR-3: Main St. Overland Flow

Runoff = 0.8 cfs @ 12.07 hrs, Volume= 0.1 af, Depth> 1.83" Routed to Link DP-3 : Main Street Drainage System

Area (ac) (CN	Descrip	otion		
0.0)	68	<50% (Grass cove	er, Poor, H	ISG A
0.3	3	86	<50% (Grass cove	er, Poor, H	ISG C
0.0)	98	Paved	barking, H	SG A	
0.0)	98	Paved	barking, H	SG C	
0.4	1	87	Weight	ed Averag	е	
0.3	3		91.97%	Pervious	Area	
0.0)		8.03%	mpervious	s Area	
_						
Tc	Leng	gth	Slope	Velocity	Capacity	Description
<u>(min)</u>	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
5.0						Direct Entry,

Summary for Pond 1P: Infiltration Basin #1P

Inflow Area = Inflow = Outflow = Discarded = Primary = Routed to	5.4 ac 13.5 c 1.9 c 1.9 c 0.0 c	c, 56.19% Im fs @ 12.07 fs @ 12.59 fs @ 12.59 fs @ 12.59 fs @ 0.00 Existing Adja	perviou hrs, Vo hrs, Vo hrs, Vo hrs, Vo cent Sw	s, Inflow Do blume= blume= blume= blume= ale	epth > 2.12" 1.0 af 1.0 af, At 1.0 af 0.0 af	for 2-Yr ten= 86%,	event Lag= 31.0 mi	n
Routing by S Peak Elev= 2	tor-Ind metho 218.4' @ 12.5	od, Time Spa 9 hrs Surf. <i>A</i>	n= 0.00 \rea= 9,	-24.00 hrs, 749 sf Sto	dt= 0.03 hrs prage= 13,572	cf		
Plug-Flow de Center-of-Ma	etention time= ass det. time=	54.0 min cal 53.4 min (8	culated 53.5 - 8	for 1.0 af (′ 00.1)	100% of inflow	/)		
Volume	Invert A	vail.Storage	Storag	ge Descript	ion			
#1	217.0'	1,428 cf	Sedin	nent Foreb	ay (Prismatio	Listed bel	ow (Recalc) -Ir	npervious
#2	217.0'	56,735 cf	Infiltr	ation Biore	etention Basi	n (Irregula	r) Listed below	(Recalc)
		58,162 cf	Total	Available S	torage			
Flovetion	Curf Ar		o Storo	Cum	Store			
Elevation (feet)	Suri.Are	ea in ft) (cub	c.Store	Cum (cubic	.Slore			
217.0	<u>(34-</u>		<u>nc-ieet)</u>		0			
217.0	69	96	540		540			
219.0	1,08	30	888		1,428			
Elevation	Surf.Are	ea Perim.		Inc.Store	Cum.St	ore	Wet.Area	
(feet)	(sq-	ft) (feet)	()	cubic-feet)	(cubic-fe	eet)	(sq-ft)	
217.0	7,8	72 372.6		0		0	7,872	
218.0	9,1	53 403.9		8,504	8,5	504	9,845	
219.0	10,52	27 435.2		9,832	18,	336	11,976	
220.0	11,93	90 400.0 57 407 9	•	11,203	29,:	269	14,207	
221.0	15,5	13 529 1	1	12,700	42, 56 J	735	19 326	
222.0	10,2	10 020.1		17,077	50,	100	13,320	
Device Rou	uting	Invert Out	let Devi	ces				
#1 Prir	nary	220.6' 20. Hea 4.0 Coe 2.6	0' long ad (feet) 4.5 5.0 ef. (Engl 4 2.65	x 8.0' brea 0.2 0.4 0) 5.5 ish) 2.43 2 2.65 2.66	Oth Broad-C 0.6 0.8 1.0 1. 2.54 2.70 2.6 2.66 2.68 2.	rested Red 2 1.4 1.6 9 2.68 2.6 70 2.74	tangular Wei 1.8 2.0 2.5 3 68 2.66 2.64	r 3.0 3.5 2.64
#2 Dis	carded	217.0' 8.2 '	70 in/hr	Exfiltratio	n over Surfac	ce area		

Discarded OutFlow Max=1.9 cfs @ 12.59 hrs HW=218.4' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.9 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=217.0' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

Summary for Link DP-1: Existing Wetland

Inflow Area	ı =	8.4 ac,	9.98	8% Impervi	ous,	Inflow	Depth >	> 1.2	5" for	2-Yr	event	
Inflow	=	9.8 cfs	@	12.15 hrs,	Volu	me=	0	.9 af				
Primary	=	9.8 cfs	@	12.15 hrs,	Volu	me=	0	.9 af,	Atten= ()%,	Lag= 0.0	0 min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	a =	5.6 ac, 54.	05% Impervious	, Inflow Depth >	0.03"	for 2-Yr	event
Inflow	=	0.1 cfs @	12.14 hrs, Vol	ume= 0.0) af		
Primary	=	0.1 cfs @	12.14 hrs, Vol	ume= 0.0) af, Atte	en= 0%,	Lag= 0.0 min

Summary for Link DP-3: Main Street Drainage System

Inflow Area	ı =	0.4 ac,	8.03	3% Impervi	ous,	Inflow	Depth	> 1.8	33" fo	r 2-Y	r event	
Inflow	=	0.8 cfs	@	12.07 hrs,	Volu	me=	Ċ).1 af				
Primary	=	0.8 cfs	@	12.07 hrs,	Volu	me=	C).1 af,	Atten=	= 0%,	Lag=	0.0 min

16694.00-PR	Type III 24-hr 5-Yr Rainfall=4.01"
Prepared by VHB, Inc	Printed 6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions LLC	C Page 28

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-1A: Direct Runoff to	Runoff Area=0.7 ac 10.72% Impervious Runoff Depth>2.64" Tc=5.0 min CN=87 Runoff=2.2 cfs 0.2 af
SubcatchmentPR-1B: Off-Site Area to the	Runoff Area=7.7 ac 9.91% Impervious Runoff Depth>1.89" Flow Length=740' Tc=11.3 min CN=78 Runoff=14.2 cfs 1.2 af
SubcatchmentPR-2A: Overland Flow	Runoff Area=0.2 ac 0.00% Impervious Runoff Depth>1.27" Flow Length=639' Tc=8.9 min CN=69 Runoff=0.3 cfs 0.0 af
SubcatchmentPR-2B: Parking Lot	Runoff Area=4.6 ac 48.77% Impervious Runoff Depth>2.83" Tc=5.0 min CN=89 Runoff=15.6 cfs 1.1 af
SubcatchmentPR-2C: Proposed Building	Runoff Area=0.8 ac 100.00% Impervious Runoff Depth>3.77" Tc=5.0 min CN=98 Runoff=3.2 cfs 0.2 af
SubcatchmentPR-3: Main St. Overland Flow	w Runoff Area=0.4 ac 8.03% Impervious Runoff Depth>2.64" Tc=5.0 min CN=87 Runoff=1.2 cfs 0.1 af
Pond 1P: Infiltration Basin #1P Discarde	Peak Elev=219.1' Storage=21,095 cf Inflow=18.8 cfs 1.3 af ed=2.0 cfs 1.3 af Primary=0.0 cfs 0.0 af Outflow=2.0 cfs 1.3 af
Link DP-1: Existing Wetland	Inflow=15.6 cfs 1.4 af Primary=15.6 cfs 1.4 af
Link DP-2: Existing Adjacent Swale	Inflow=0.3 cfs 0.0 af Primary=0.3 cfs 0.0 af
Link DP-3: Main Street Drainage System	Inflow=1.2 cfs 0.1 af Primary=1.2 cfs 0.1 af

Total Runoff Area = 14.4 acRunoff Volume = 2.8 afAverage Runoff Depth = 2.34"72.75% Pervious = 10.5 ac27.25% Impervious = 3.9 ac

Summary for Subcatchment PR-1A: Direct Runoff to Wetland

Runoff = 2.2 cfs @ 12.07 hrs, Volume= 0.2 af, Depth> 2.64" Routed to Link DP-1 : Existing Wetland

Area (ac)	CN	Description
0.6	86	<50% Grass cover, Poor, HSG C
0.1	98	Paved parking, HSG C
0.7	87	Weighted Average
0.6		89.28% Pervious Area
0.1		10.72% Impervious Area
Tc Le (min) (ength (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Summary for Subcatchment PR-1B: Off-Site Area to the South

Runoff = 14.2 cfs @ 12.16 hrs, Volume= 1.2 af, Depth> 1.89" Routed to Link DP-1 : Existing Wetland

Area (a	ac)	CN	Descrip	otion		
	3.9	79	<50% (Grass cove	er, Poor, H	SG B
	1.0	86	<50% (Grass cove	er, Poor, H	SG C
(0.3	89	<50% (Grass cove	er, Poor, H	SG D
(0.5	98	Paved	parking, H	ISG B	
(0.0	98	Paved	parking, H	ISG C	
(0.0	98	Paved	parking, H	ISG D	
(0.2	98	Roofs,	HSG B		
(0.0	98	Roofs,	HSG D		
	1.2	55	Woods	, Good, H	SGB	
(0.1	70	VVoods	, Good, H	SGC	
	0.4	70		<u>, Good, H</u>	SGD	
	1.1	78	Weight	ed Averag	le Ana a	
t	0.9		90.09%		Area	
(0.8		9.91%	Imperviou	s Area	
Тс	、 I	onath	Slope	Velocity	Canacity	Description
(min)) L	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
	/ }	50	0.0400	0.19	(010)	Sheet Flow Grass-Sheet
7.0	,	50	0.0400	0.15		Grass: Short $n=0.150$ P2= 3.10"
2.1		154	0.0300	1.21		Shallow Concentrated Flow, Grass-Concentrated
						Short Grass Pasture Kv= 7.0 fps
1.0)	148	0.0160	2.57		Shallow Concentrated Flow, Paved-Concentrated
						Paved Kv= 20.3 fps
1.3	3	116	0.0470	1.52		Shallow Concentrated Flow, Grass-Concentrated
						Short Grass Pasture Kv= 7.0 fps
0.5	5	50	0.0600	1.71		Shallow Concentrated Flow, Grass-Concentrated
	_					Short Grass Pasture Kv= 7.0 fps
0.5	5	55	0.0720	1.88		Shallow Concentrated Flow, Grass-Concentrated
		. –	o 4 4 - o			Short Grass Pasture Kv= 7.0 tps
0.1		17	0.1170	2.39		Shallow Concentrated Flow, Grass-Concentrated
0.5	-	40	0.0075	4.00		Short Grass Pasture KV= 7.0 fps
0.5)	40	0.0375	1.30		Shart Cross Dosture Ky= 7.0 fps
1 0	`	110	0.0670	1 81		Shallow Concentrated Flow Grass Concentrated
1.0	,	110	0.0070	1.01		Short Grass Pasture Ky= 7.0 frs
11 2	2	740	Total			
11.0	,	140	iulai			

Summary for Subcatchment PR-2A: Overland Flow

Runoff = 0.3 cfs @ 12.14 hrs, Volume= 0.0 af, Depth> 1.27" Routed to Link DP-2 : Existing Adjacent Swale

Area (ad	c) CN	Descrip	otion		
0.	2 68	<50% (Grass cove	er, Poor, H	SG A
0.	0 86	<50% (Grass cove	er, Poor, H	SG C
0.	2 69	Weight	ed Averag	e	
0.	2	100.00	% Perviou	s Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet
					Grass: Short n= 0.150 P2= 3.10"
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated
					Short Grass Pasture Kv= 7.0 fps
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved
					Paved Kv= 20.3 fps
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated
					Short Grass Pasture Kv= 7.0 fps
8.9	639	Total			

Summary for Subcatchment PR-2B: Parking Lot

Runoff = 15.6 cfs @ 12.07 hrs, Volume= 1.1 af, Depth> 2.83" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description
0.4	68	<50% Grass cover, Poor, HSG A
1.0	86	<50% Grass cover, Poor, HSG C
0.2	89	<50% Grass cover, Poor, HSG D
0.0	98	Paved parking, HSG A
2.2	98	Paved parking, HSG C
0.0	98	Paved parking, HSG D
0.1	98	Roofs, HSG C
0.7	77	Woods, Good, HSG D
4.6	89	Weighted Average
2.4		51.23% Pervious Area
2.3		48.77% Impervious Area
Tc L	.ength	Slope Velocity Capacity Description
(min)	(feet)	(ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Summary for Subcatchment PR-2C: Proposed Building

Runoff = 3.2 cfs @ 12.07 hrs, Volume= 0.2 af, Depth> 3.77" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description
0.0	86	<50% Grass cover, Poor, HSG C
0.8	98	Roofs, HSG C
0.8	98	Weighted Average
0.0		0.00% Pervious Area
0.8		100.00% Impervious Area
Tc Le (min) (ength (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Summary for Subcatchment PR-3: Main St. Overland Flow

Runoff = 1.2 cfs @ 12.07 hrs, Volume= 0.1 af, Depth> 2.64" Routed to Link DP-3 : Main Street Drainage System

Area (ac)	CN	Description							
0.0	68	<50% Grass cover, Poor, HSG A							
0.3	86	<50% Grass cover, Poor, HSG C							
0.0	98	Paved parking, HSG A							
0.0	98	Paved parking, HSG C							
0.4	87	Weighted Average							
0.3		91.97% Pervious Area							
0.0		8.03% Impervious Area							
Tc	Length	Slope Velocity Capacity Description							
<u>(min)</u>	(feet)	(ft/ft) (ft/sec) (cfs)							
5.0		Direct Entry,							

Summary for Pond 1P: Infiltration Basin #1P

Inflow Area = Inflow = Outflow = Discarded = Primary = Routed to	5.4 ac 18.8 c 2.0 c 2.0 c 0.0 c Link DP-2 : I	e, 56.19% Im fs @ 12.07 fs @ 12.76 fs @ 12.76 fs @ 12.76 fs @ 0.00 Existing Adjac	pervious hrs, Vo hrs, Vo hrs, Vo hrs, Vo cent Sw	s, Inflow Do lume= lume= lume= lume= lume= ale	epth > 2.97 1.3 af 1.3 af, <i>I</i> 1.3 af 0.0 af	" for 5 Atten= 8	5-Yr event 9%, Lag= 41.3 n	nin
Routing by S Peak Elev= 2	tor-Ind metho 219.1' @ 12.7	od, Time Spa 6 hrs Surf.A	n= 0.00- \rea= 10	-24.00 hrs,),706 sf St	dt= 0.03 hrs corage= 21,0	95 cf		
Plug-Flow de Center-of-Ma	etention time= ass det. time=	83.5 min cal 82.8 min (8	culated 74.6 - 79	for 1.3 af (′ 91.7)	100% of inflc	ow)		
Volume	Invert A	vail.Storage	Storac	ge Descript	ion			
#1	217.0'	1,428 cf	Sedin	nent Foreb	ay (Prismat	ic)Listed	l below (Recalc) -	Impervious
#2	217.0'	56,735 cf	Infiltra	ation Biore	etention Bas	sin (Irreg	gular)Listed below	v (Řecalc)
		58,162 cf	Total /	Available S	torage			
				0	Otawa			
Elevation (feet)	Surf.Are	ea Ind	c.Store	Cum (cubic	.Store			
	<u>(sq-</u>			(cubic	0			
217.0			540		0 540			
219.0	1.08	30	888		1.428			
	.,				.,			
Elevation	Surf.Are	ea Perim.		Inc.Store	Cum.S	Store	Wet.Area	
(feet)	(sq-	ft) (feet)	(0	cubic-feet)	(cubic-	feet)	(sq-ft)	
217.0	7,87	72 372.6		0		0	7,872	
218.0	9,15	53 403.9		8,504	8	,504	9,845	
219.0	10,52	435.2		9,832	18	,336	11,976	
220.0	11,99	95 466.5		11,253	29	,589	14,267	
221.0	13,5	07 497.8 12 520.1		12,708	42	,358 725	10,717	
222.0	15,2	15 529.1		14,377	50	,735	19,320	
Device Rou	uting	Invert Out	let Devi	ces				
#1 Prir	nary	220.6' 20.0 Hea 4.0 Coe 2.64	D' long ad (feet) 4.5 5.0 of. (Engl 4 2.65	x 8.0' brea 0.2 0.4 0) 5.5 ish) 2.43 2 2.65 2.66	dth Broad-0 0.6 0.8 1.0 2.54 2.70 2. 2.66 2.68 2	Crested 1.2 1.4 .69 2.68	Rectangular We 1.6 1.8 2.0 2.5 3 2.68 2.66 2.64 4	ir 3.0 3.5 2.64
#2 Dis	carded	217.0' 8.2	70 in/hr	Exfiltratio	n over Surfa	ace area	3	

Discarded OutFlow Max=2.0 cfs @ 12.76 hrs HW=219.1' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 2.0 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=217.0' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

Summary for Link DP-1: Existing Wetland

Inflow Area	ı =	8.4 ac,	9.98	3% Impervi	ous,	Inflow	Depth >	• 1.9	5" for	5-Yı	revent	
Inflow	=	15.6 cfs	@	12.15 hrs,	Volu	me=	1.	.4 af				
Primary	=	15.6 cfs	@	12.15 hrs,	Volu	me=	1.	.4 af,	Atten=	0%,	Lag= 0.	0 min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	a =	5.6 ac, 54	4.05% Impe	rvious,	Inflow [Depth >	0.0	5" for 5	-Yr eve	ent
Inflow	=	0.3 cfs (① 12.14 hr	s, Volu	ime=	0.0	af			
Primary	=	0.3 cfs (ā) 12.14 hr	s, Volu	ime=	0.0	af,	Atten= 0	%, Lag	= 0.0 min

Summary for Link DP-3: Main Street Drainage System

Page 38

Inflow Area	a =	0.4 ac,	8.0	3% Impervi	ous,	Inflow	Depth >	> 2.6	4" for	5-Y	r event	
Inflow	=	1.2 cfs	@	12.07 hrs,	Volu	me=	0	.1 af				
Primary	=	1.2 cfs	@	12.07 hrs,	Volu	me=	0	.1 af,	Atten=	0%,	Lag= 0.0	0 min

16694.00-PR	Type III 24-hr	10-Yr Rainfall=4.76"
Prepared by VHB, Inc		Printed 6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions L	LC	Page 39
		•

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-1A: Direct Runoff to	Runoff Area=0.7 ac 10.72% Impervious Runoff Depth>3.34" Tc=5.0 min CN=87 Runoff=2.8 cfs 0.2 af
SubcatchmentPR-1B: Off-Site Area to the	Runoff Area=7.7 ac 9.91% Impervious Runoff Depth>2.50" Flow Length=740' Tc=11.3 min CN=78 Runoff=18.8 cfs 1.6 af
SubcatchmentPR-2A: Overland Flow	Runoff Area=0.2 ac 0.00% Impervious Runoff Depth>1.78" Flow Length=639' Tc=8.9 min CN=69 Runoff=0.4 cfs 0.0 af
SubcatchmentPR-2B: Parking Lot	Runoff Area=4.6 ac 48.77% Impervious Runoff Depth>3.54" Tc=5.0 min CN=89 Runoff=19.4 cfs 1.4 af
SubcatchmentPR-2C: Proposed Building	Runoff Area=0.8 ac 100.00% Impervious Runoff Depth>4.52" Tc=5.0 min CN=98 Runoff=3.8 cfs 0.3 af
SubcatchmentPR-3: Main St. Overland Flo	W Runoff Area=0.4 ac 8.03% Impervious Runoff Depth>3.34" Tc=5.0 min CN=87 Runoff=1.5 cfs 0.1 af
Pond 1P: Infiltration Basin #1P Discard	Peak Elev=219.7' Storage=27,798 cf Inflow=23.1 cfs 1.7 af led=2.2 cfs 1.7 af Primary=0.0 cfs 0.0 af Outflow=2.2 cfs 1.7 af
Link DP-1: Existing Wetland	Inflow=20.7 cfs 1.8 af Primary=20.7 cfs 1.8 af
Link DP-2: Existing Adjacent Swale	Inflow=0.4 cfs 0.0 af Primary=0.4 cfs 0.0 af
Link DP-3: Main Street Drainage System	Inflow=1.5 cfs 0.1 af Primary=1.5 cfs 0.1 af

Total Runoff Area = 14.4 acRunoff Volume = 3.6 afAverage Runoff Depth = 3.00"72.75% Pervious = 10.5 ac27.25% Impervious = 3.9 ac

Summary for Subcatchment PR-1A: Direct Runoff to Wetland

Runoff = 2.8 cfs @ 12.07 hrs, Volume= 0.2 af, Depth> 3.34" Routed to Link DP-1 : Existing Wetland

Area (ac)	CN	Description
0.6	86	<50% Grass cover, Poor, HSG C
0.1	98	Paved parking, HSG C
0.7	87	Weighted Average
0.6		89.28% Pervious Area
0.1		10.72% Impervious Area
Tc Le (min)	ength (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Summary for Subcatchment PR-1B: Off-Site Area to the South

Runoff = 18.8 cfs @ 12.16 hrs, Volume= 1.6 af, Depth> 2.50" Routed to Link DP-1 : Existing Wetland

Area (a	ac)	CN	Descrip	otion								
	3.9	79	<50% (<50% Grass cover, Poor, HSG B								
	1.0	86	<50% (50% Grass cover, Poor, HSG C								
(0.3	89	<50% (50% Grass cover, Poor, HSG D								
(0.5	98	Paved	parking, H	ISG B							
(0.0	98	Paved	parking, H	ISG C							
(0.0	98	Paved	parking, H	ISG D							
(0.2	98	Roofs,	HSG B								
(0.0	98	Roofs,	HSG D								
	1.2	55	Woods	, Good, H	SGB							
(0.1	70	Woods	, Good, H	SGC							
	0.4	70	vvoods	<u>, Good, H</u>	SGD							
	1.1	78	Weight	ed Averag	le Ana a							
t	0.9		90.09%		Area							
(0.8		9.91%	Imperviou	s Area							
Тс	、 I	onath	Slope	Velocity	Canacity	Description						
(min)) L	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description						
	/ }	50	0.0400	0.19	(010)	Sheet Flow Grass-Sheet						
7.0	,	50	0.0400	0.15		Grass: Short $n=0.150$ P2= 3.10"						
2.1		154	0.0300	1.21		Shallow Concentrated Flow, Grass-Concentrated						
						Short Grass Pasture Kv= 7.0 fps						
1.0)	148	0.0160	2.57		Shallow Concentrated Flow, Paved-Concentrated						
						Paved Kv= 20.3 fps						
1.3	3	116	0.0470	1.52		Shallow Concentrated Flow, Grass-Concentrated						
						Short Grass Pasture Kv= 7.0 fps						
0.5	5	50	0.0600	1.71		Shallow Concentrated Flow, Grass-Concentrated						
	_					Short Grass Pasture Kv= 7.0 fps						
0.5	5	55	0.0720	1.88		Shallow Concentrated Flow, Grass-Concentrated						
		. –	o 4 4 - o			Short Grass Pasture Kv= 7.0 tps						
0.1		17	0.1170	2.39		Shallow Concentrated Flow, Grass-Concentrated						
0.5	-	40	0.0075	4.00		Short Grass Pasture KV= 7.0 fps						
0.5)	40	0.0375	1.30		Shart Cross Dosture Ky= 7.0 fps						
1 0	`	110	0.0670	1 81		Shallow Concentrated Flow Grass Concentrated						
1.0	,	110	0.0070	1.01		Short Grass Pasture Ky= 7.0 frs						
11 2	2	740	Total									
11.0	,	140	iulai									

Summary for Subcatchment PR-2A: Overland Flow

Runoff = 0.4 cfs @ 12.13 hrs, Volume= 0.0 af, Depth> 1.78" Routed to Link DP-2 : Existing Adjacent Swale

Area (ad	CN (C	Descrip	otion									
0.	2 68	<50% (Grass cove	er, Poor, HS	SG A							
0.	0 86	<50% ()% Grass cover, Poor, HSG C									
0.	2 69	Weight	Weighted Average									
0.	2	100.00	% Perviou	s Area								
Tc	Length	Slope	Velocity	Capacity	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet							
					Grass: Short n= 0.150 P2= 3.10"							
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated							
					Short Grass Pasture Kv= 7.0 fps							
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved							
					Paved Kv= 20.3 fps							
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated							
					Short Grass Pasture Kv= 7.0 fps							
8.9	639	Total										

Summary for Subcatchment PR-2B: Parking Lot

Runoff = 19.4 cfs @ 12.07 hrs, Volume= 1.4 af, Depth> 3.54" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description
0.4	68	<50% Grass cover, Poor, HSG A
1.0	86	<50% Grass cover, Poor, HSG C
0.2	89	<50% Grass cover, Poor, HSG D
0.0	98	Paved parking, HSG A
2.2	98	Paved parking, HSG C
0.0	98	Paved parking, HSG D
0.1	98	Roofs, HSG C
0.7	77	Woods, Good, HSG D
4.6	89	Weighted Average
2.4		51.23% Pervious Area
2.3		48.77% Impervious Area
TC L	ength	Slope Velocity Capacity Description
<u>(min)</u>	(feet)	(ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Summary for Subcatchment PR-2C: Proposed Building

Runoff = 3.8 cfs @ 12.07 hrs, Volume= 0.3 af, Depth> 4.52" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description		
0.0	86	<50% Grass	cover, Poor, H	ISG C
0.8	98	Roofs, HSG (C	
0.8	98	Weighted Ave	erage	
0.0		0.00% Pervio	us Area	
0.8		100.00% Imp	ervious Area	
Tc L (min)	.ength (feet)	Slope Veloo (ft/ft) (ft/se	city Capacity ec) (cfs)	Description
5.0				Direct Entry,

Summary for Subcatchment PR-3: Main St. Overland Flow

Runoff = 1.5 cfs @ 12.07 hrs, Volume= 0.1 af, Depth> 3.34" Routed to Link DP-3 : Main Street Drainage System

Area (ac)) CN	Description						
0.0	68	<50% Grass cover, Poor, HSG A						
0.3	86	<50% Grass cover, Poor, HSG C						
0.0	98	Paved parking, HSG A						
0.0	98	Paved parking, HSG C						
0.4	. 87	Weighted Average						
0.3	6	91.97% Pervious Area						
0.0		8.03% Impervious Area						
_								
Тс	Length	Slope Velocity Capacity Description						
<u>(min)</u>	(feet)	(ft/ft) (ft/sec) (cfs)						
5.0		Direct Entry,						

Summary for Pond 1P: Infiltration Basin #1P

Inflow Area Inflow = Outflow = Discarded = Primary = Routed to	= 5.4 ac = 23.1 c = 2.2 c = 2.2 c = 0.0 c D Link DP-2 :	c, 56.19% Im ofs @ 12.07 ofs @ 12.88 ofs @ 12.88 ofs @ 0.00 Existing Adja	perviou hrs, Vo hrs, Vo hrs, Vo hrs, Vo cent Sw	s, Inflow D blume= blume= blume= blume= vale	epth > 3.68 1.7 af 1.7 af, 1.7 af, 0.0 af	8" for Atten=	10-Yr event 90%, Lag= 48.6 min	
Routing by S Peak Elev=	Stor-Ind metho 219.7' @ 12.8	od, Time Spa 88 hrs Surf. <i>F</i>	n= 0.00 \rea= 11	-24.00 hrs, 1,585 sf Si	dt= 0.03 hrs torage= 27,7	s 798 cf		
Plug-Flow d Center-of-M	etention time= ass det. time=	= 107.2 min c = 106.5 min (alculate 892.9 -	d for 1.7 af 786.4)	(100% of in	flow)		
Volume	Invert A	vail.Storage	Storag	ge Descript	ion			
#1	217.0'	1,428 cf	Sedin	nent Foreb	oay (Prisma	tic)Liste	d below (Recalc) -Im	pervious
#2	217.0'	56,735 cf	Infiltr	ation Biore	etention Ba	sin (Irre	egular)_isted below (F	Recalc)
		58,162 cf	Total	Available S	storage			
			0	0	01			
Elevation	Surf.Are	ea In ft) (oub	c.Store	Cum (cubi	i.Store			
	<u>(sq-</u>	ii) (cub 22		(Cubi	<u>c-ieet)</u>			
217.0	30	53	0 540		0 540			
210.0	1 0	30 30	888		1 428			
210.0	1,00		000		1,120			
Elevation	Surf.Are	ea Perim.		Inc.Store	Cum.	Store	Wet.Area	
(feet)	(sq-	ft) (feet)) ((cubic-feet)	(cubic	-feet)	(sq-ft)	
217.0	7,8	72 372.6	5	0		0	7,872	
218.0	9,1	53 403.9)	8,504		8,504	9,845	
219.0	10,5	27 435.2	-	9,832	1	8,336	11,976	
220.0	11,9	95 466.5)	11,253	2	9,589	14,267	
221.0	13,5		5	12,768	4	2,358	16,717	
222.0	15,2	13 529.1		14,377	5	6,735	19,326	
Device Ro	uting	Invert Out	tlet Devi	ces				
#1 Pri	mary	220.6' 20. Hea 4.0 Coo 2.6	0' long ad (feet) 4.5 5.0 ef. (Engl 4 2.65	x 8.0' brea 0.2 0.4 (0) 5.5 lish) 2.43 2 2.65 2.66	adth Broad-).6 0.8 1.0 2.54 2.70 2 2.66 2.68	Creste 1.2 1.4 2.69 2.6 2.70 2.1	d Rectangular Weir 4 1.6 1.8 2.0 2.5 3. 58 2.68 2.66 2.64 2 74	0 3.5 .64
#2 Dis	scarded	217.0' 8.2	70 in/hr	Exfiltratio	on over Sur	face are	ea (

Discarded OutFlow Max=2.2 cfs @ 12.88 hrs HW=219.7' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 2.2 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=217.0' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

Summary for Link DP-1: Existing Wetland

Inflow Area	ı =	8.4 ac,	9.98	3% Impervi	ious,	Inflow	Depth >	2.5	7" for 2	10-Yr	event	
Inflow	=	20.7 cfs	@	12.15 hrs,	Volu	me=	1.	8 af				
Primary	=	20.7 cfs	@	12.15 hrs,	Volu	me=	1.	8 af,	Atten= 0	%, L	ag= 0.0) min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	a =	5.6 ac,	54.05	5% Impervi	ious,	Inflow	Depth	> 0.0)7" foi	· 10-`	r eve	nt
Inflow	=	0.4 cfs	@	12.13 hrs,	Volu	me=		0.0 af				
Primary	=	0.4 cfs	@	12.13 hrs,	Volu	me=		0.0 af,	Atten=	: 0%,	Lag=	0.0 min

Summary for Link DP-3: Main Street Drainage System

Inflow Area	a =	0.4 ac,	8.03	3% Impervi	ous,	Inflow	Depth >	3.3	4" for	10- ۱	r event	
Inflow	=	1.5 cfs	@	12.07 hrs,	Volu	me=	0.	1 af				
Primary	=	1.5 cfs	@	12.07 hrs,	Volu	me=	0.	1 af,	Atten=	0%,	Lag= 0	.0 min

16694.00-PR	Type III 24-hr	25-Yr Rai	nfall=5.80"
Prepared by VHB, Inc		Printed	6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solutions LI	_C		Page 50

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-1A: Direct Runoff to	Runoff Area=0.7 ac 10.72% Impervious Runoff Depth>4.32" Tc=5.0 min CN=87 Runoff=3.5 cfs 0.3 af
SubcatchmentPR-1B: Off-Site Area to the	Runoff Area=7.7 ac 9.91% Impervious Runoff Depth>3.40" Flow Length=740' Tc=11.3 min CN=78 Runoff=25.6 cfs 2.2 af
SubcatchmentPR-2A: Overland Flow	Runoff Area=0.2 ac 0.00% Impervious Runoff Depth>2.55" Flow Length=639' Tc=8.9 min CN=69 Runoff=0.6 cfs 0.0 af
SubcatchmentPR-2B: Parking Lot	Runoff Area=4.6 ac 48.77% Impervious Runoff Depth>4.54" Tc=5.0 min CN=89 Runoff=24.5 cfs 1.8 af
SubcatchmentPR-2C: Proposed Building	Runoff Area=0.8 ac 100.00% Impervious Runoff Depth>5.56" Tc=5.0 min CN=98 Runoff=4.6 cfs 0.4 af
SubcatchmentPR-3: Main St. Overland Flow	w Runoff Area=0.4 ac 8.03% Impervious Runoff Depth>4.32" Tc=5.0 min CN=87 Runoff=1.9 cfs 0.1 af
Pond 1P: Infiltration Basin #1P Discarde	Peak Elev=220.5' Storage=37,636 cf Inflow=29.1 cfs 2.1 af ed=2.5 cfs 2.1 af Primary=0.0 cfs 0.0 af Outflow=2.5 cfs 2.1 af
Link DP-1: Existing Wetland	Inflow=27.9 cfs 2.4 af Primary=27.9 cfs 2.4 af
Link DP-2: Existing Adjacent Swale	Inflow=0.6 cfs 0.0 af Primary=0.6 cfs 0.0 af
Link DP-3: Main Street Drainage System	Inflow=1.9 cfs 0.1 af Primary=1.9 cfs 0.1 af

Total Runoff Area = 14.4 acRunoff Volume = 4.7 afAverage Runoff Depth = 3.94"72.75% Pervious = 10.5 ac27.25% Impervious = 3.9 ac

Summary for Subcatchment PR-1A: Direct Runoff to Wetland

Runoff = 3.5 cfs @ 12.07 hrs, Volume= 0.3 af, Depth> 4.32" Routed to Link DP-1 : Existing Wetland

Area (ac)	CN	Description					
0.6	86	<50% Grass cover, Poor, HSG C					
0.1	98	Paved parking, HSG C					
0.7	87	Weighted Average					
0.6		J.28% Pervious Area					
0.1		10.72% Impervious Area					
Tc Lo (min)	ength (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)					
5.0		Direct Entry,					

Summary for Subcatchment PR-1B: Off-Site Area to the South

Runoff = 25.6 cfs @ 12.16 hrs, Volume= 2.2 af, Depth> 3.40" Routed to Link DP-1 : Existing Wetland

Area (a	ac)	CN	Descrip	otion		
	3.9	79	<50% (Grass cove	er, Poor, H	SG B
	1.0	86	<50% (Grass cove	er, Poor, H	SG C
(0.3	89	<50% (Grass cove	er, Poor, H	SG D
(0.5	98	Paved	parking, H	ISG B	
(0.0	98	Paved	parking, H	ISG C	
(0.0	98	Paved	parking, H	ISG D	
(0.2	98	Roofs,	HSG B		
(0.0	98	Roofs,	HSG D		
	1.2	55	Woods	, Good, H	SGB	
(0.1	70	Woods	, Good, H	SGC	
	0.4	70		<u>, Good, H</u>	SGD	
	1.1	78	Weight	ed Averag	le Ana a	
t	0.9		90.09%		Area	
(0.8		9.91%	Imperviou	s Area	
Тс	、 I	onath	Slope	Velocity	Canacity	Description
(min)) L	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
	/ }	50	0.0400	0.19	(010)	Sheet Flow Grass-Sheet
7.0	,	50	0.0400	0.15		Grass: Short $n=0.150$ P2= 3.10"
2.1		154	0.0300	1.21		Shallow Concentrated Flow, Grass-Concentrated
						Short Grass Pasture Kv= 7.0 fps
1.0)	148	0.0160	2.57		Shallow Concentrated Flow, Paved-Concentrated
						Paved Kv= 20.3 fps
1.3	3	116	0.0470	1.52		Shallow Concentrated Flow, Grass-Concentrated
						Short Grass Pasture Kv= 7.0 fps
0.5	5	50	0.0600	1.71		Shallow Concentrated Flow, Grass-Concentrated
	_					Short Grass Pasture Kv= 7.0 fps
0.5	5	55	0.0720	1.88		Shallow Concentrated Flow, Grass-Concentrated
		. –	o 4 4 - o			Short Grass Pasture Kv= 7.0 tps
0.1		17	0.1170	2.39		Shallow Concentrated Flow, Grass-Concentrated
0.5	-	40	0.0075	4.00		Short Grass Pasture KV= 7.0 fps
0.5)	40	0.0375	1.30		Shart Cross Dosture Ky= 7.0 fps
1 0	`	110	0.0670	1 81		Shallow Concentrated Flow Grass Concentrated
1.0	,	110	0.0070	1.01		Short Grass Pasture Ky= 7.0 frs
11 2	2	740	Total			
11.0	,	140	iulai			

Summary for Subcatchment PR-2A: Overland Flow

Runoff = 0.6 cfs @ 12.13 hrs, Volume= 0.0 af, Depth> 2.55" Routed to Link DP-2 : Existing Adjacent Swale

Area (ad) CN	Descrip	otion				
0.	2 68	<50% (Grass cove	er, Poor, H	SG A		
0.	0 86	<50% (Grass cove	er, Poor, H	SG C		
0.	2 69	Weight	ed Averag	е			
0.	0.2 100.00% Pervious Area						
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet		
					Grass: Short n= 0.150 P2= 3.10"		
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated		
					Short Grass Pasture Kv= 7.0 fps		
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved		
					Paved Kv= 20.3 fps		
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated		
					Short Grass Pasture Kv= 7.0 fps		
8.9	639	Total					

Summary for Subcatchment PR-2B: Parking Lot

Runoff = 24.5 cfs @ 12.07 hrs, Volume= 1.8 af, Depth> 4.54" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description
0.4	68	<50% Grass cover, Poor, HSG A
1.0	86	<50% Grass cover, Poor, HSG C
0.2	89	<50% Grass cover, Poor, HSG D
0.0	98	Paved parking, HSG A
2.2	98	Paved parking, HSG C
0.0	98	Paved parking, HSG D
0.1	98	Roofs, HSG C
0.7	77	Woods, Good, HSG D
4.6	89	Weighted Average
2.4		51.23% Pervious Area
2.3		48.77% Impervious Area
Tal	onath	Slana Valasity Conseity Description
IC L	(foot)	(ff/ff) (ff/coc) (ofc)
(mm)	(leet)	
5.0		Direct Entry,

Summary for Subcatchment PR-2C: Proposed Building

Runoff = 4.6 cfs @ 12.07 hrs, Volume= 0.4 af, Depth> 5.56" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description
0.0	86	<50% Grass cover, Poor, HSG C
0.8	98	Roofs, HSG C
0.8	98	Weighted Average
0.0		0.00% Pervious Area
0.8		100.00% Impervious Area
Tc Le (min) (ngth feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Summary for Subcatchment PR-3: Main St. Overland Flow

Runoff = 1.9 cfs @ 12.07 hrs, Volume= 0.1 af, Depth> 4.32" Routed to Link DP-3 : Main Street Drainage System

Area (ac)) CN	Description								
0.0	68	<50% Grass cover, Poor, HSG A								
0.3	86	<50% Grass cover, Poor, HSG C								
0.0	98	Paved parking, HSG A								
0.0	98	Paved parking, HSG C								
0.4	. 87	Weighted Average								
0.3		91.97% Pervious Area								
0.0		8.03% Impervious Area								
_										
Тс	Length	Slope Velocity Capacity Description								
<u>(min)</u>	(feet)	(ft/ft) (ft/sec) (cfs)								
5.0		Direct Entry,								

Summary for Pond 1P: Infiltration Basin #1P

Inflow Are Inflow Outflow Discarde Primary Route	ea = 5.4 = 29 = 2 d = 2 = 0 ed to Link DP-2	ac, 56.19 .1 cfs @ .5 cfs @ .5 cfs @ .0 cfs @ 2 : Existing	9% Imp 12.07 h 12.99 h 12.99 h 0.00 h Adjace	ervious ars, Vo ars, Vo ars, Vo ars, Vo ent Sw	s, Inflow D lume= lume= lume= lume= ale	epth > 4 2.1 a 2.1 a 2.1 a 0.0 a	.69" fc f f, Atten f f	or 25-Yı = 92%,	r event Lag= 55.1 n	nin
Routing b Peak Ele	oy Stor-Ind me v= 220.5' @ 1	ethod, Time 2.99 hrs	e Span Surf.Ar	= 0.00 ea= 12	24.00 hrs, 2,817 sf St	dt= 0.03 torage= 3	hrs 7,636 cf	:		
Plug-Flov Center-o	w detention tin f-Mass det. tin	ne= 138.4 ı ne= 137.9 ı	min cal min (9	culateo 18.4 -	d for 2.1 af 780.5)	(100% of	inflow)			
Volume	Invert	Avail.Sto	rage	Storag	ge Descript	ion				
#1	217.0'	1,4	28 cf	Sedin	nent Foreb	ay (Prisr	natic)Lis	sted belo	ow (Recalc) ·	-Impervious
#2	217.0'	56,7	35 cf	Infiltra	ation Biore	etention	Basin (I	rregula	r) _isted belov	v (Recalc)
		58,1	62 cf	Total /	Available S	torage				
Elevatio	n Surf	Area	Inc	Store	Cum	Store				
(feet	t) (:	sa-ft)	(cubic	c-feet)	(cubi	c-feet)				
217.	0 0	383	(0	(1.1.1.1	0				
218.	0	696		540		540				
219.	0 1	1,080		888		1,428				
Elovatio		Aroa E	Oorim		Inc Store	Cu	m Storo		Wat Araa	
(feet	t) (1	sa-ft)	(feet)	((cubic-feet)	(cul	bic-feet)		(sq-ft)	
217	0 7	7 872	372 6		0	(00.	0		7 872	
218.	0 9	9.153	403.9		8,504		8,504		9,845	
219.	0 10),527	435.2		9,832		18,336		11,976	
220.	0 1 ⁻	1,995	466.5		11,253		29,589		14,267	
221.	0 13	3,557	497.8		12,768		42,358		16,717	
222.	0 15	5,213	529.1		14,377		56,735		19,326	
Device	Routing	Invert	Outle	et Devi	ces					
#1	Primary	220.6'	20.0 Head 4.0 4 Coef	long d (feet) 4.5 5.0 . (Engl	x 8.0' brea 0.2 0.4 0) 5.5 ish) 2.43 2	dth Broa 0.6 0.8 1 2.54 2.70	ad-Crest .0 1.2 1) 2.69 2	ted Rec 1.4 1.6 2.68 2.6	tangular Wo 1.8 2.0 2.5 88 2.66 2.64	eir 3.0 3.5 4 2.64
#2	Discarded	217.0'	2.64 8.27	2.05 0 in/hr	Exfiltratio	2.00 2.0 n over S	o 2.70 urface a	2.74 I rea		
Discorde		lov-2 5 of		00 hro	LIW-220	E' (Eroo	Diochar	ao)		

Discarded OutFlow Max=2.5 cfs @ 12.99 hrs HW=220.5' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 2.5 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=217.0' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

Summary for Link DP-1: Existing Wetland

Inflow Area	=	8.4 ac,	9.98	% Imperv	ious,	Inflow	Depth >	> 3.4	7" for	25-\	r even	t
Inflow	=	27.9 cfs	@ 1	2.15 hrs,	Volu	me=	2	.4 af				
Primary	=	27.9 cfs	<u>@</u> 1	2.15 hrs,	Volu	me=	2	.4 af,	Atten=	0%,	Lag= ().0 min
Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	ı =	5.6 ac,	54.05	5% Impervi	ious,	Inflow	Depth	> 0.1	0" for	25-\	r eve	nt
Inflow	=	0.6 cfs	s @	12.13 hrs,	Volu	me=	().0 af				
Primary	=	0.6 cfs	s @	12.13 hrs,	Volu	me=	().0 af,	Atten=	0%,	Lag=	0.0 min

Summary for Link DP-3: Main Street Drainage System

Inflow Area	a =	0.4 ac,	8.0	3% Impervi	ous,	Inflow	Depth >	4.3	2" for	25-`	Yr event	
Inflow	=	1.9 cfs	@	12.07 hrs,	Volu	me=	0.	1 af				
Primary	=	1.9 cfs	@	12.07 hrs,	Volu	me=	0.	1 af,	Atten=	0%,	Lag= 0.	0 min

16694.00-PR	Type III 24-hr	100-Yr Raii	nfall=7.39"
Prepared by VHB, Inc		Printed	6/19/2025
HydroCAD® 10.20-5c s/n 01038 © 2023 HydroCAD Software Solution	ons LLC		Page 61
			-

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-1A: Direct Runoff to	Runoff Area=0.7 ac 10.72% Impervious Runoff Depth>5.85" Tc=5.0 min CN=87 Runoff=4.7 cfs 0.3 af
SubcatchmentPR-1B: Off-Site Area to the	Runoff Area=7.7 ac 9.91% Impervious Runoff Depth>4.82" Flow Length=740' Tc=11.3 min CN=78 Runoff=36.1 cfs 3.1 af
SubcatchmentPR-2A: Overland Flow	Runoff Area=0.2 ac 0.00% Impervious Runoff Depth>3.83" Flow Length=639' Tc=8.9 min CN=69 Runoff=0.9 cfs 0.1 af
SubcatchmentPR-2B: Parking Lot	Runoff Area=4.6 ac 48.77% Impervious Runoff Depth>6.09" Tc=5.0 min CN=89 Runoff=32.3 cfs 2.4 af
SubcatchmentPR-2C: Proposed Building	Runoff Area=0.8 ac 100.00% Impervious Runoff Depth>7.15" Tc=5.0 min CN=98 Runoff=5.9 cfs 0.5 af
SubcatchmentPR-3: Main St. Overland Flow	
Pond 1P: Infiltration Basin #1P Discarded=	Peak Elev=220.9' Storage=42,986 cf Inflow=38.2 cfs 2.8 af 2.6 cfs 2.5 af Primary=10.0 cfs 0.4 af Outflow=12.6 cfs 2.8 af
Link DP-1: Existing Wetland	Inflow=39.3 cfs 3.4 af Primary=39.3 cfs 3.4 af
Link DP-2: Existing Adjacent Swale	Inflow=10.5 cfs 0.4 af Primary=10.5 cfs 0.4 af
Link DP-3: Main Street Drainage System	Inflow=2.5 cfs 0.2 af Primary=2.5 cfs 0.2 af

Total Runoff Area = 14.4 acRunoff Volume = 6.5 afAverage Runoff Depth = 5.42"72.75% Pervious = 10.5 ac27.25% Impervious = 3.9 ac

Summary for Subcatchment PR-1A: Direct Runoff to Wetland

Runoff = 4.7 cfs @ 12.07 hrs, Volume= 0.3 af, Depth> 5.85" Routed to Link DP-1 : Existing Wetland

Area (ac)	CN	Description							
0.6	86	<50% Grass cover, Poor, HSG C							
0.1	98	Paved parking, HSG C							
0.7	87	Veighted Average							
0.6		89.28% Pervious Area							
0.1		10.72% Impervious Area							
Tc Le (min) (ength (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
5.0		Direct Entry,							

Summary for Subcatchment PR-1B: Off-Site Area to the South

Runoff = 36.1 cfs @ 12.16 hrs, Volume= 3.1 af, Depth> 4.82" Routed to Link DP-1 : Existing Wetland

Area (ac)) CN	Descrip	otion								
3.9	9 79	<50% (Grass cove	er, Poor, H	SG B						
1.0) 86	<50% (<50% Grass cover, Poor, HSG C								
0.3	8 89	<50% (50% Grass cover, Poor, HSG D								
0.5	5 98	Paved	parking, H	ISG B							
0.0) 98	Paved	parking, H	ISG C							
0.0) 98	Paved	parking, H	ISG D							
0.2	2 98	Roofs,	HSG B								
0.0) 98	Roofs,	HSG D								
1.2	2 55	Woods	, Good, H	SG B							
0.1	70	Woods	, Good, H	SGC							
0.4	77	Woods	, Good, H	SG D							
7.7	7 78	Weight	ed Averag	e							
6.9)	90.09%	6 Pervious	Area							
0.8	3	9.91%	Imperviou	s Area							
т.	المربع مراجع	01	\/_l!	0	Description						
IC (min)	Length			Capacity	Description						
(11111)				(CIS)							
4.3	50	0.0400	0.19		Sneet Flow, Grass-Sneet						
0.4	151	0 0200	1 01		Grass: Short n= 0.150 P2= 3.10 Shellow Concentrated Flow Crass Concentrated						
Z. I	104	0.0300	1.21		Shart Grass Desture, Ky= 7.0 fps						
10	1/18	0.0160	2 57		Shallow Concentrated Flow Payed-Concentrated						
1.0	140	0.0100	2.07		Paved Ky= 20.3 fps						
13	116	0 0470	1 52		Shallow Concentrated Flow Grass-Concentrated						
1.0	110	0.0170	1.02		Short Grass Pasture Ky=7.0 fps						
0.5	50	0.0600	1.71		Shallow Concentrated Flow, Grass-Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
0.5	55	0.0720	1.88		Shallow Concentrated Flow, Grass-Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
0.1	17	0.1170	2.39		Shallow Concentrated Flow, Grass-Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
0.5	40	0.0375	1.36		Shallow Concentrated Flow, Grass-Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
1.0	110	0.0670	1.81		Shallow Concentrated Flow, Grass-Concentrated						
					Short Grass Pasture Kv= 7.0 fps						
11.3	740	Total									

Summary for Subcatchment PR-2A: Overland Flow

Runoff = 0.9 cfs @ 12.13 hrs, Volume= 0.1 af, Depth> 3.83" Routed to Link DP-2 : Existing Adjacent Swale

Area (ad	CN (CN	Descrip	otion		
0.	2 68	<50% (Grass cove	er, Poor, HS	SG A
0.	0 86	<50% (Grass cove	er, Poor, HS	SG C
0.	2 69	Weight	ed Averag	е	
0.2 100.00%		% Perviou	s Area		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.1	50	0.0460	0.20		Sheet Flow, Grass - Sheet
					Grass: Short n= 0.150 P2= 3.10"
2.4	303	0.0890	2.09		Shallow Concentrated Flow, Grass - Concentrated
					Short Grass Pasture Kv= 7.0 fps
0.5	127	0.0460	4.35		Shallow Concentrated Flow, Paved
					Paved Kv= 20.3 fps
1.9	159	0.0380	1.36		Shallow Concentrated Flow, Grass - Concentrated
					Short Grass Pasture Kv= 7.0 fps
8.9	639	Total			

Summary for Subcatchment PR-2B: Parking Lot

Runoff = 32.3 cfs @ 12.07 hrs, Volume= 2.4 af, Depth> 6.09" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description						
0.4	68	<50% Grass cover, Poor, HSG A						
1.0	86	<50% Grass cover, Poor, HSG C						
0.2	89	<50% Grass cover, Poor, HSG D						
0.0	98	Paved parking, HSG A						
2.2	98	Paved parking, HSG C						
0.0	98	Paved parking, HSG D						
0.1	98	Roofs, HSG Č						
0.7	77	Woods, Good, HSG D						
4.6	89	Weighted Average						
2.4		51.23% Pervious Area						
2.3		48.77% Impervious Area						
TC L	ength	Slope Velocity Capacity Description						
<u>(min)</u>	(feet)	(ft/ft) (ft/sec) (cfs)						
5.0		Direct Entry,						

Summary for Subcatchment PR-2C: Proposed Building

Runoff = 5.9 cfs @ 12.07 hrs, Volume= 0.5 af, Depth> 7.15" Routed to Pond 1P : Infiltration Basin #1P

Area (ac)	CN	Description								
0.0	86	<50% Grass	<50% Grass cover, Poor, HSG C							
0.8	98	Roofs, HSG (Roofs, HSG C							
0.8	98	Weighted Ave	erage							
0.0 0.00% Pervious Area										
0.8 100.00% Impervious Area		ervious Area								
Tc L (min)	.ength (feet)	Slope Veloo (ft/ft) (ft/se	city Capacity ec) (cfs)	Description						
5.0				Direct Entry,						

Summary for Subcatchment PR-3: Main St. Overland Flow

Runoff = 2.5 cfs @ 12.07 hrs, Volume= 0.2 af, Depth> 5.85" Routed to Link DP-3 : Main Street Drainage System

Area (ac)) CN	Description							
0.0	68	<50% Grass cover, Poor, HSG A							
0.3	86	<50% Grass cover, Poor, HSG C							
0.0	98	Paved parking, HSG A							
0.0	98	Paved parking, HSG C							
0.4	. 87	Weighted Average							
0.3	6	91.97% Pervious Area							
0.0		8.03% Impervious Area							
_									
Тс	Length	Slope Velocity Capacity Description							
<u>(min)</u>	(feet)	(ft/ft) (ft/sec) (cfs)							
5.0		Direct Entry,							

Summary for Pond 1P: Infiltration Basin #1P

Inflow Area Inflow Outflow Discarded Primary Routed	a = 5.4 ac = 38.2 c = 12.6 c = 2.6 c = 10.0 c to Link DP-2 :	c, 56.19% Im cfs @ 12.07 cfs @ 12.35 cfs @ 12.35 cfs @ 12.35 cfs @ 12.35 Existing Adja	pervious hrs, Vo hrs, Vo hrs, Vo hrs, Vo cent Sw	s, Inflow Do Iume= Iume= Iume= Iume= Iume= ale	epth > 6.24" 2.8 af 2.8 af, At 2.5 af 0.4 af	for 100-` ten= 67%,	Yr event Lag= 16.5 min	
Routing by Peak Elev	/ Stor-Ind meth = 220.9' @ 12.3	od, Time Spa 35 hrs Surf.A	n= 0.00- \rea= 13	24.00 hrs, ,462 sf St	dt= 0.03 hrs torage= 42,98	6 cf		
Plug-Flow Center-of-	detention time= Mass det. time=	= 128.0 min ca = 127.5 min (alculated 901.1 -	d for 2.8 af 773.6)	(100% of inflo	w)		
Volume	Invert A	Avail.Storage	Storag	ge Descript	ion			
#1	217.0'	1,428 cf	Sedin	nent Foreb	ay (Prismatio	Listed bel	ow (Recalc) -Imp	pervious
#2	217.0'	56,735 cf	Infiltra	ation Biore	etention Basi	n (Irregula	r) Listed below (F	(ecalc)
		58,162 cf	Total /	Available S	torage			
Elevation	Surf Ar		o Store	Cum	Store			
(feet)	Sull.Al	ft) (cub	ic-feet)	(cubic	c-feet)			
217.0	3	83	0	(00010	0			
218.0	6	96	540		540			
219.0	1,0	80	888		1,428			
Elevation	Surf.Ar	ea Perim.	(.	Inc.Store	Cum.St	ore	Wet.Area	
	(sq-	<u>(1001)</u>	(0	cubic-teet)	(CUDIC-TE	eet)	(sq-π)	
217.0	7,8	72 372.6		0	0.7	0	7,872	
210.0	9,1	53 403.9 27 425.2		8,504 0,922	0,0 19.1	226	9,845	
219.0	10,5	27 433.2 95 466.5		9,032	10,0 20 <i>i</i>	580	14 267	
220.0	13.5	57 497 8		12 768	42 3	358	16 717	
222.0	15,2	13 529.1		14,377	56,7	735	19,326	
Device F	Routing	Invert Out	let Devi	ces				
#1 F	rimary	220.6' 20. 0 Hea 4.0 Coe 2.64	D' long ad (feet) 4.5 5.0 ef. (Engl 4 2 65	x 8.0' brea 0.2 0.4 0) 5.5 ish) 2.43 2 2.65 2.66	1 dth Broad-Ci 1.6 0.8 1.0 1. 2.54 2.70 2.6 2.66 2.68 2.5	rested Rec 2 1.4 1.6 9 2.68 2.6 70 2 74	tangular Weir 1.8 2.0 2.5 3. 68 2.66 2.64 2.	0 3.5 .64
#2 E	Discarded	217.0' 8.2	70 in/hr	Exfiltratio	n over Surfac	ce area		

Discarded OutFlow Max=2.6 cfs @ 12.35 hrs HW=220.9' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 2.6 cfs)

Primary OutFlow Max=9.9 cfs @ 12.35 hrs HW=220.9' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 9.9 cfs @ 1.46 fps)

Summary for Link DP-1: Existing Wetland

Inflow Area	=	8.4 ac,	9.98	3% Imperv	ious,	Inflow	Depth >	4.9	1" for	100	-Yr ever	nt
Inflow	=	39.3 cfs	@	12.15 hrs,	Volu	me=	3.	4 af				
Primary	=	39.3 cfs	@	12.15 hrs,	Volu	me=	3.	4 af,	Atten=	0%,	Lag= 0.	0 min

Summary for Link DP-2: Existing Adjacent Swale

Inflow Area	=	5.6 ac, 5	54.05	5% Impervi	ious,	Inflow	Depth	> 0.9	93" fo	r 100	-Yr ev	ent
Inflow	=	10.5 cfs	@	12.34 hrs,	Volu	me=		0.4 af				
Primary	=	10.5 cfs	@	12.34 hrs,	Volu	me=		0.4 af,	Atten=	= 0%,	Lag=	0.0 min

Summary for Link DP-3: Main Street Drainage System

Page 71

Inflow Area	a =	0.4 ac,	8.0	3% Impervi	ous,	Inflow	Depth	> 5.8	5" for	100	-Yr eve	ent
Inflow	=	2.5 cfs	@	12.07 hrs,	Volu	me=	().2 af				
Primary	=	2.5 cfs	@	12.07 hrs,	Volu	me=	().2 af,	Atten=	0%,	Lag=	0.0 min

Appendix C: Standard 3 Computations and Supporting Documentation

- > Soil Evaluation in accordance with Volume 3, Chapter 1 of the Handbook
- > Recharge Volume Calculations
- > 72-hour drawdown analysis
- > Mounding Analysis

Known for excellence. Built on trust.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

35 Nutmeg Drive Suite 325 Trumbull, CT 06611 T: 203.380.8188 F: 203.375.1529 www.gza.com May 28, 2025 Project No. 05.0047465.00

David Neal, AIA The SLAM Collaborative 80 Glastonbury Boulevard, 3rd Floor Glastonbury, Connecticut

Re: Preliminary Geotechnical Engineering Report Proposed Medical Development 500 Main Street Groton, Massachusetts 01471

Dear Mr. Neal:

GZA GeoEnvironmental, Inc. (GZA) has prepared this preliminary geotechnical engineering report for the proposed Medical Development located at 500 Main Street and adjoining parcels in Groton, Massachusetts (Site). This report summarizes our findings and presents our preliminary geotechnical engineering recommendations for design and construction. Our services were conducted in accordance with the scope of work in our proposal dated March 21, 2025 as accepted April 7, 2025 in accordance the December 11, 2024 SLAM Subcontract for Professional Consulting Services. Report Limitations are attached in **Appendix A**.

The elevations used in this report were interpreted from the survey provided ¹ and reference the North American Vertical Datum of 1988 (NAVD88), unless stated otherwise.

EXISTING CONDITIONS

Our understanding of the Project is based on the:

- Drawing titled "Conceptual Massing Plan 1", dated March 13, 2025, provided by SLAM;
- Drawing titled "Layout and Materials Plan Phase 1 and Phase 2", prepared by SLAM, 2 sheets, C2.00 through C2.01, pre-dated June 13, 2025; and,
- AutoCAD file titled "16694.00 PR.dwg", provided by VHB, transmitted via email on May 5, 2025.

The approximate location of the Site is presented on Figure 1-Site Locus.

The Site is located on the northeastern side of the Main Street. The Site consists of four parcels and is bound by Main Street on the west, Taylor Street to the south, and forested areas to the north and east. The parcels range from approximately 1.3 to 9 acres, with a combined area of about 15 acres. The parcels along Main Street are developed with residential buildings. The northern most parcel includes the footprint of a commercial building that was recently razed. We understand that the area proposed for development is about 7.1 acres. Elevations within the proposed development area range from about El. 246

¹ Ground surface elevations were interpolated from drawing titled "Illustrative Site Plan – Phase 1", prepared VHB, Inc., 1 sheets dated May 1, 2025.

at a high knoll in the southeastern area of the Site to El. 216 feet in the western area of the Site. The Site features are shown on **Figure 2- Exploration Location Plan**.

PROPOSED DEVELOPMENT

The proposed development consists of a Stand-Alone Emergency Facility and Medical Office Building, helipad, parking and drive areas, and stormwater detention pond. The proposed Stand-Alone Emergency Facility will have a footprint of approximately 21,650 square feet (sf) and the Medical Office Building will have a footprint of approximately 11,000 square feet. The buildings will be one-story with no below grade spaces, and the proposed finished-floor elevation will be at El. 237 feet. Based on the proposed floor grades, we anticipate cuts and fills on the order of 9 and 10 feet, respectively. A helipad will be located in the northern area of the Site and a stormwater detention pond will be located northwest of the proposed buildings. No other details for the proposed development were provided to GZA. The proposed development is shown on **Figure 2 – Exploration Location Plan**.

SUBSURFACE EXPLORATION PROGRAM

Ten test borings, including one offset boring (GZ-1 through GZ-9 and GZ-3A) were completed by GeoSearch, Inc. of Sterling, Massachusetts and observed by GZA between April 15 and 17, 2025. Test boring GZ-3A was drilled as an offset of GZ-3 due to initial shallow auger drilling refusal in boring GZ-3. Test Borings were advanced with an ATV mounted CME-55LC drill rig and hollow-stem augers. The test borings were drilled to depths between about 6.3 to 23 feet below existing grade. Soil samples were collected with a 1-3/8-inch I.D. split-spoon sampler driven with a 140-pound automatic hammer falling 30 inches. Blows per 6 inches on the sampler were recorded. The number of hammer blows required to drive the split-spoon sampler from 6 to 18 inches is the SPT N-value. The hammer blows and corresponding SPT N-values were recorded on the boring logs.

The subsurface explorations were monitored and logged by GZA personnel. The soils were classified according to the modified Burmister soil classification system. Details of the classification system are provided with the test boring logs in **Appendix B**.

The explorations were located by line of sight and tape measurements from existing site features and with handheld submeter GPS unit. The approximate ground surface elevations referenced on the test boring logs were interpolated from the topographic survey for the project provided to GZA and should be considered approximate. The exploration locations are presented on **Figure 2 – Exploration Location Plan**.

GENERALIZED SUBSURFACE CONDITIONS

Based on the test boring explorations, the generalized subsurface conditions at the Site consist, in order of increasing depth, of: Topsoil, undocumented Fill, naturally deposited Stratified Glacial Deposits, naturally deposited Glacial Till, and Bedrock. The subsurface conditions are presented in the test boring logs attached in **Appendix B** and are summarized below.

- <u>TOPSOIL</u> Topsoil was encountered at the ground surface in the explorations except GZ-3 and GZ-3A and was observed to be about 2- to 6-inches thick.
- <u>FILL</u> Undocumented Fill extended from below the topsoil or ground surface and extended up to about 6 feet below existing grade, except in test borings GZ-5 and GZ-8 where Fill was not encountered. The Fill generally consisted of grey and brown, fine to coarse sand with 20% to 50% silt, and 10% to 50% gravel. SPT-N values obtained in the Fill ranged from 3 to 25 blows per foot, indicating a relative density of very loose to medium dense.

- <u>STRATIFIED GLACIAL DEPOSITS</u> Stratified Glacial Deposits were encountered below the undocumented Fill in test borings GZ-5 through GZ-9. The top of the Stratified Glacial Deposits was encountered at about El. 215 to 238 feet in the test borings, corresponding to about 0.3 to 5 feet below grade. The Stratified Glacial Deposits consisted of tan-brown, grey, fine to medium sand with 10% to 50% gravel and 5% to 35% silt. Test borings GZ-6 through GZ-8 terminated in this layer. SPT-N values within the Stratified Glacial Deposits ranged from 6 to 52 blows per foot indicating a relative density of loose to very dense.
- <u>GLACIAL TILL</u> Naturally deposited Glacial Till deposits were encountered below the undocumented Fill or Stratified Glacial Deposits at approximately 2 to 13.5 feet below existing grade in GZ-1 through GZ-5 and GZ-9. The top of the Glacial Till was encountered at about El. 205.5 to 230 feet. The Glacial Till consisted of tan-brown, orange, grey, fine to coarse sand with 20% to 50% gravel and 20% to 50% silt. The test borings terminated in this layer at split spoon sampler and auger refusal between El. 199.9 and 223.5 feet. Based on drilling resistance, cobbles and boulders are expected to be present in the glacial till, which is generally consistent with glacial till soils. SPT N values obtained in the Glacial Till ranged from 15 blows per foot to refusal indicating a relative density of medium dense to very dense. However, higher SPT N values may be due to the presence of cobbles and boulders in this strata and may not be representative of the actual relative density.
- <u>BEDROCK</u> –Bedrock or a boulder was encountered in test boring GZ-9 and a 2-foot-long bedrock core collected. The Bedrock or boulder was extremely fractured which jammed in the rock core barrel and prevented further advancement. The top of Bedrock or boulder was encountered at El. 219 feet. The bedrock recovery and RQD were 53% and 0%, respectively. The bedrock consisted of hard, slightly weathered, moderately to extremely fractured, fine to medium grained Schist. Photographs of the bedrock core are included in **Appendix D**.
- <u>GROUNDWATER</u> Groundwater was measured in the test borings across the Site and observed in the spoon samples within the explorations (except GZ-3 which encounter shallow refusal) at depth ranging from 2 to 10 feet below grade corresponding to elevations between El. 214 and 230 feet. It should be noted that future water levels will vary due to seasonal and climatic fluctuations, and changes caused by construction and stabilization time.

Infiltration Recommendations

Test borings GZ-7 and GZ-8 were performed in the proposed stormwater infiltration area in the northwestern area of the Site. The tests borings encountered the Stratified Glacial Deposits at depths of 3 feet at GZ-7 and 0.6 feet at GZ-8, corresponding to EL. 215 and 215.4 feet, respectively. Groundwater was encountered at 4 feet below grade at GZ-7 and 2 feet below grade at GZ-8, which corresponds to about El. 214 feet in both test borings. Mottling, which may be indicative of the seasonal high groundwater, was observed in GZ-7 at about 3 feet below grade.

GZA attempted borehole infiltration testing at GZ-7 and GZ-8. However, the ASTM D5126 Standard Guide for Comparison of Field Methods for Determining Hydraulic Conductivity in Vadose Zone is only applicable to unsaturated soils. Groundwater was about 2 to 4 feet below grade, and the infiltration tests could not be performed in accordance with the ASTM requirements. In lieu of ASTM D5126, laboratory sieve and hydrometer testing was performed on sample GZ-8 S-2 from 2 to 4 feet below grade. The test results indicated that the soil consists of a fine to medium sand, with 3% silt. Based on this gradation and our observations, the Massachusetts Stormwater Handbook Table 2.3.3 indicates a Rawls Rate of 8.27 inches/hour for this sample. However, the gradation of the Stratified Glacial Deposits are variable and may differ with depth and area of the Site. Other laboratory gradation data in the Stratified Glacial Deposits indicates Rawls Rates as low as 0.52 inch/hour. The Rawls Rates and seasonal high ground water observations presented above are preliminary.

The Massachusetts Stormwater Handbook, Volume 2, includes specific requirements for the design and site documentation for stormwater management systems. The Stormwater Handbook requires a minimum of 3 test borings or test pits for every 5,000 square feet of proposed infiltration basin. Additional investigations and test pits will be needed

to meet the requirements of the Stormwater Quality Manual as the location, size and type of stormwater systems are determined.

Laboratory Testing

Four grain-size analyses by sieve and hydrometer were performed on samples collected in the test borings to aid in our visual classifications of the on-site soils and estimate soil permeability below the infiltration tests. The laboratory test results are included in **Appendix C** and are summarized in the table below.

Boring ID	Sample ID	Sample Depth (ft)	Soil Stratum	% Passing No. 200 Sieve
GZ-2	S-2	2-4	Glacial Till	36.8
GZ-5	S-2	2-4	Stratified Glacial Deposits	1.9
GZ-5	S-6	11-13	Stratified Glacial Deposits	29.1
GZ-8	S-2	2-4	Stratified Glacial Deposits	2.7

PRELIMINARY GEOTECHNICAL DESIGN RECOMMENDATIONS

The geotechnical design recommendations below are consistent with the Tenth Edition of the Massachusetts State Building Code (CMR 780) based on the 2021 International Building Code (IBC) and Massachusetts State Amendments, which together constitute the current State of Massachusetts Building Code effective October 11, 2024.

BUILDING FOUNDATION AND SLABS ON GRADE

General

Undocumented Fill, pavement, utilities, buried foundation remnants, and Topsoil are not suitable for support of new foundations or slabs-on-grade for the proposed buildings. Tree stumps, root balls, and construction debris from site clearing and demolition activities are also considered unsuitable material. GZ-2 was drilled in the proposed building footprint and GZ-1 and GZ-3 were drilled west of the proposed building footprint. Two to six feet of Undocumented Fill was encountered in the three test borings, and the top of naturally deposited, undisturbed Glacial Till was encountered below the Fill at El. 223 to 230 feet.

Existing site grades in the proposed building footprint range between El. 227 and 246 feet, and proposed finished floor elevation will be at El. 237 feet. Based on existing grades, cuts and fills will be on the order of 9 feet and 10 feet, respectively. The location of the proposed building changed between the time that the test borings were drilled and the preparation of this report. Additional test borings are required to assess subsurface conditions in other parts of the proposed building footprint.

Proposed Foundations

Following excavation of unsuitable materials and subgrade preparation, the proposed buildings can be supported on shallow spread footings bearing on the following:

- Naturally deposited, undisturbed Stratified Glacial Deposits or Glacial Till; or
- Compacted Structural Fill overlying naturally deposited, undisturbed Stratified Glacial Deposits or Glacial Till.

Footings should be proportioned on the basis of a net allowable bearing pressure of 4,000 pounds per square foot (psf). Minimum footing widths should be 3 feet for rectangular footings and 2 feet for continuous footings. For smaller footings,

the allowable bearing pressure should be reduced proportionately. All footings exposed to frost should be embedded a minimum of 4-feet below finished grade. Interior footings in heated areas should be embedded a minimum of 18-inches below the slab-on-grade.

If boulders or bedrock are encountered above the proposed footing or slab subgrade elevation, we recommend that the boulders (or bedrock) be over-excavated a minimum of 12-inches below the bottom of footing / slab elevation and backfilled with compacted Structural Fill or Crushed Stone.

For site preparation and foundations designed and constructed in accordance with the recommendations of this report, estimated total building settlements are expected to be less than 1 inch, the majority of which will occur during construction. Maximum anticipated differential settlement between adjacent columns and across the span of foundation walls is expected to be less than ½ inch.

Slabs-on-Grade

Slabs-on-grade should bear on a base course consisting of a minimum of 6 inches of Select Fill or Crushed Stone overlying geotextile fabric over:

- Naturally deposited, undisturbed Stratified Glacial Deposits or Glacial Till; or
- Compacted Structural Fill overlying the naturally deposited, Stratified Glacial Deposits and Glacial Till.

The modulus of subgrade reaction recommended for slab design is 150 pounds per cubic inch (pci). Vapor barrier and waterproofing requirements of the building code should be observed. Subgrades for slabs-on-grade should be prepared in accordance with the construction recommendations presented below.

The proposed site grading has not been provided except for the finished floor Elevation of EL. 237 feet. Groundwater onsite varied from El. 214 to 230 feet. If the proposed building slab-on-grade is below grade, or within proximity to the seasonal high groundwater table, a subslab drainage system may be required to control groundwater below the slab. Additional test borings are required to assess subsurface conditions in the proposed building footprint.

Excavation and Subgrade Preparation for Building Foundations and Slabs-on-Grade

Undocumented Fill, utilities, potential buried foundation remnants, and other unsuitable materials should be removed in their entirety from beneath footings and slabs-on-grade and their zone of influence. The zone of influence is defined by a line extending 1 foot horizontally from bottom of footing and then down at a 1 horizontal by 1 vertical line to the top of naturally deposited Stratified Glacial Deposits or Glacial Till. The exposed subgrade should be evaluated by a Geotechnical Engineer for the potential presence of unsuitable materials. If unsuitable materials are encountered, they should be further over excavated until suitable bearing soils are encountered.

The exposed naturally deposited Stratified Glacial Deposits and Glacial Till should be subjected to proof compaction. Proof compaction consists of a minimum of four passes of a large vibratory roller having a minimum dynamic force of 3,000 pounds per foot of drum width or a large vibratory plate compactor having a minimum static weight of 700 pounds. Any weak or unstable areas identified should be over excavated and replaced with compacted Structural Fill, Crushed Stone wrapped with geotextile fabric, or Select Fill. Vibrations should be discontinued if disturbance or weaving of the subgrade is observed. Proof compaction may be waived or modified if, with the Geotechnical Engineer's concurrence, it is determined that this will disturb an otherwise suitable subgrade based on observed field conditions.

Final excavation to footing subgrade elevations should be performed with a smooth-edged bucket to reduce the potential for subgrade disturbance. Naturally deposited Stratified Glacial Deposits and Glacial Till footing subgrades are also

susceptible to disturbance from water and construction activities and should be protected with a 4-inch thick Crushed Stone Working Mat. Where Crushed Stone is greater than 4-inches thick, it should be wrapped in non-woven geotextile fabric. If the subgrade soils become disturbed during construction, they should be over-excavated and replaced with compacted Structural Fill.

Frozen subgrades should be over excavated and replaced with compacted Structural Fill or crushed stone wrapped in filter fabric. Alternatively, the frozen subgrade may be thawed, scarified, and re-compacted. Soil bearing surfaces below completed foundations and slabs should be protected against freezing before and after concrete placement. If construction is performed during freezing weather, footings on soil should be backfilled to a sufficient depth as soon as possible after they are constructed. Alternatively, insulating blankets or other measures should be used for protection against freezing.

Cobbles and boulders were inferred in the Glacial Till based on sampler and auger refusal encountered in the test borings. Therefore, boulder excavation may be required within the limits of excavation to allow for footing and slab subgrade preparation, and for utility installation. We anticipate that boulder and incidental bedrock excavation can be performed with hoe ramming and ripping with heavy tracked excavators. If required, drilling and chemical splitting may be performed to limit vibrations. Blasting should not be allowed.

<u>Seismic</u>

The on-site soils are generally not considered susceptible to liquefaction during the IBC design earthquake. In accordance with IBC 2021 and ASCE 7-20, the site may be classified as Site Class D "Stiff soil". The Tenth Editon Building Code indicates the site's design response spectra be constructed using the following coefficients:

where:

- S_s is the spectral acceleration coefficient at 0.2-sec period, uncorrected for Site Class.
- S₁ is the spectral acceleration coefficient at 1.0-sec period, uncorrected for Site Class

Lateral Pressures

Restrained walls should be designed on the basis of a lateral soil pressure equivalent to a fluid pressure of 55 psf per foot of depth, plus a uniform pressure equal to one half of any vertical surcharge load. Unrestrained walls should be designed on the basis of a lateral soil pressure equivalent to a fluid pressure of 35 psf per foot of depth, plus a uniform pressure equal to one third of any surcharge. These lateral earth pressure recommendations are based on level backfill behind retaining walls. A minimum static vertical surcharge pressure of 250 psf should be used for the design of retaining walls.

The above values of lateral earth pressures do not include hydrostatic pressures on the walls (site retaining walls and foundation walls). To achieve this condition, free draining backfill ("Select Fill") must be used for wall backfill within 3 feet laterally of the back of the wall. Wall drains are required for site retaining walls and for any building walls subject to unbalanced lateral earth pressures. Wall drains should consist of a 4-inch diameter perforated plastic (PVC) pipe surrounded by ¾-inch size Crushed Stone, which is in turn separated from the wall backfill with a non-woven filter fabric (Mirafi 140N or equal) installed at footing grade. The drains that cannot be "daylighted" and drained to the ground surface should discharge to the site stormwater system by gravity or by a sump with duplex pumps. The ground surface adjacent to the foundation walls should be backfilled with at least 6 inches of low permeability soil (topsoil) and roof drains should be diverted away from the structure.

We recommend that lateral loads be resisted by sliding friction between the base of the spread footings and base course layer with an ultimate friction coefficient against base shear of 0.45. The factor of safety against sliding should be at least 1.5. Passive pressure may also be included as a resisting force when analyzing for sliding in locations where the soil will not be removed from in front of the footings. Passive resistance may be computed using an allowable equivalent fluid pressure of 180 pcf, neglecting the upper foot of wall embedment, provided that compacted Structural Fill is used to backfill excavations within 5 feet of the foundation walls.

Existing Utilities

GZA is not aware of any existing utilities in the proposed building footprint. However, any existing utilities present that will not serve the new building or which are not required to remain in their current location should be removed and relocated completely from below the proposed buildings. Any existing utilities within the footprint of the proposed buildings which are proposed to remain, should be reviewed and evaluated by the specifying engineer for such utilities and accounted for in the project design. If existing or proposed utilities extend beneath foundations, the utilities should be designed to accept the foundation loading and installed and backfilled prior foundation construction. Alternatively, foundations can be lowered (stepped) to allow for utilities to extend through the stem walls above the footings.

Temporary Excavation Slopes

Based on GZA's understanding of the project, we anticipate conventional sloped excavations will be feasible and supportof-excavation systems are not anticipated to be required for the proposed construction. The Contractor is responsible for construction site safety and should be aware that slope height, slope inclination and excavation depths should in no case exceed those specified in local, state, or federal safety regulations (e.g. OSHA Health and Safety Standards for Excavations, 29 CFR Part 1926). Temporary cut and fill slopes in soil should be no steeper than 1.5H:1V. As a safety measure, it is recommended that all vehicles and earth stockpiles be kept a lateral distance away from the edge of excavations at least equal to the slope height. Protect slope faces against the weather elements.

Construction Dewatering

Groundwater was observed at depths between 2 and 10 feet below grade and groundwater is anticipated to be encountered during construction. Dewatering should be performed as necessary to allow excavation and observation of the subgrades in the dry. Dewatering should be made ahead of the excavation and to at least 2 feet below the planned subgrades. We anticipate that construction dewatering can be accomplished with sumps and pumps located within excavations. In addition, constructing small temporary earth berms and grading to allow drainage away from excavations is recommended to control surface water runoff. Discharge of accumulated water should be in accordance with all local, State and Federal regulations.

EARTH MATERIALS AND COMPACTION REQUIREMENTS

Recommended earth materials for use as fill and compaction requirements for this project are provided in **Table 2** and **Table 3**.

REUSE OF ON-SITE SOILS

The excavated on-site soils are anticipated to consist of undocumented Fill, Stratified Glacial Deposits, and Glacial Till. Some of the Stratified Glacial Deposits may meet the gradation requirements. The undocumented Fill and Glacial Till are not anticipated to meet the gradation requirements of Structural Fill or Select Fill.

However, the undocumented Fill, Stratified Glacial Deposits (where it does not meet the gradation requirements), and Glacial Till can be used as Structural Fill if it can be properly placed and compacted with the following limitations and recommendations:

- The visual soil descriptions of the undocumented Fill, Stratified Glacial Deposits, and Glacial Till estimated the soil has a fines content (silt and clay) to be up to 50%. The soils will be slow draining and difficult to reuse as engineered fill, particularly during wet and winter weather conditions and when the moisture content is above the optimum compaction water content. Stockpiled material should be covered with either tarps or polyethylene sheeting to protect the soil from precipitation and uncovered during sunny days to allow the material to dry.
- The soils will be susceptible to disturbance when exposed to precipitation and construction traffic. Compaction
 and maintenance of subgrades will be difficult; in particular if they become wet. Although it may be possible to
 place and compact this material, it will likely be difficult and will require strict control of moisture. Drying of
 excessively wet soil may be required and could require excessive time and effort.
- Delays in construction should be anticipated if the Stratified Glacial Deposits, Glacial Till, and undocumented Fill material is proposed to be reused and not properly managed. The construction bid documents should clearly indicate the variable and sometimes high fines content of the material, the expected difficulty re-using the material, and provide the technical specifications for management, placement and compaction. Where feasible, reuse of these materials should occur in drier summer and early fall months.

ADDITIONAL SUBSURFACE EXPLORATIONS

Once the project proceeds into final design, GZA recommends being provided with information that may be required for final design. Additional subsurface explorations are recommended to support the design of foundations and for the design of the stormwater management system.

CONSTRUCTION TESTING AND OBSERVATION

GZA should observe and document key geotechnical components of design and construction, and provide ongoing geotechnical consulting including the following:

- Review or preparation of geotechnical specifications;
- Review Contractor's earthwork material and submittals;
- Preparation of subgrades; and
- Backfill and compaction below the foundations and slabs.

We recommend that GZA be retained to provide observation and services during construction to mitigate potential for delays to the project schedule. Our involvement during construction will: 1) allow evaluation of actual conditions exposed during excavation and foundation installation; and 2) allow for a prompt response should unanticipated conditions be encountered.

We appreciate the opportunity to work for you on this project. If you have any questions, please call the undersigned.

Very truly yours, GZA GEOENVIRONMENTAL, INC.

Pamela Waters, P.E.^{CT} Project Manager

David M. Barstow, P.E.^{CT} Associate Principal

Attachments:

Table 1 – Summary of Subsurface Exploration Data Table 2 - Recommended Use and Gradation Criteria for Fill Materials Table 3 – Compaction Methods

Figure 1 – Site Locus Figure 2 – Exploration Location Plan

Appendix A – Limitations Appendix B – Test Boring Logs Appendix C – Laboratory Test Results Appendix D – Rock Core Photographs

Jason E. Ressler, P.E. Consultant Reviewer

Tables

TABLE 1 SUMMARY OF TEST BORING EXPLORATION DATA

Proposed Medical Development 500 Main Street, Groton, Massachusetts

	Subsurface Exploration									
	GZ-1	GZ-2	GZ-3	GZ-3A	GZ-4	GZ-5	GZ-6	GZ-7	GZ-8	GZ-9
Proposed Location	Parking Lot	Building	Parking Lot	Parking Lot	Parking Lot	Site	Parking Lot	Detention Pond	Detention Pond	Site
	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	NE	NE	0.0	0.0	0.0	0.0	0.0	0.0
	0.5	0.4	0.0	0.0	0.2	NE	0.5	0.4	NE	0.5
Stratified Glacial Deposits	NE	NE	NE	NE	NE	0.3	5.0	3.0	0.6	2.0
Glacial Till	6.0	2.0	5.0	5.0	4.5	13.0	NE	NE	NE	13.5
Bedrock or Boulder	NE	NE	NE	NE	NE	NE	NE	NE	NE	21.0
Groundwater ²	9.0	7.0	NE	10.0	10.0	4.0	6.0	4.0	2.0	10.0
Bottom of Exploration	12 R	15.2 R	6.3 R	13.8 R	20.2 R	18.6 R	14.3 R	10.0	10.0	23.0
Thickness (ft) of:										
Topsoil	0.5	0.4	NE	NE	0.2	0.3	0.5	0.4	0.6	0.5
Undocumented Fill	5.5	1.6	5.0	5.0	4.3	NE	4.5	2.6	NE	1.5
Stratified Glacial Deposits	NE	NE	NE	NE	NE	12.7	>9.3 R	>7.0	>9.4	11.5
Glacial Till	>6 R	>13.2 R	>1.3 R	>8.8 R	>15.7 R	>5.6 R	NE	NE	NE	7.5
Approximate Elevations (ft):										
Ground Surface ³	235 5	232.0	228.0	228.0	224 0	218 5	221.0	218.0	216.0	240.0
Top of Topsoil	235.5	232.0	NF	NF	224.0	218.5	221.0	218.0	216.0	240.0
Top of Undocumented Fill	235.0	231.6	228.0	228.0	223.8	NF	220.5	217.6	NE	239.5
Top of Stratified Glacial Deposits	NE	NE	NE	NE	NE	218.2	216.0	217.0	215 4	238.0
Top of Glacial Till	220.5	230.0	223.0	223.0	210.5	205.5	NE			226.5
Top of Dessible Bedrock		200.0 NE	NE	223.0 NE	213.3 NE	200.0 NE				220.0
Croundwater										219.0
Boundwaler Dettem of Exploration	220.3	220.0		210.0	214.0	214.0	215.0	214.0	214.0	230.0
Bollom of Exploration	223.5	216.8	221.7	214.2	203.8	199.9	206.7	208.0	200.0	217.0

NE - Not encountered, R - Test Boring Ended on Refusal Notes:

1. Test Borings were performed between April 15-17, 2025 by GeoSearch and observed by GZA personnel.

2. Groundwater measurements noted were based on wet split-spoon sample depths.

3. Ground surface elevations were interpolated from the provided site plan.

4. Test boring GZ-3A was made as an offset of GZ-3. Strata above 10 feet below grade are inferred from GZ-3.

Table 2: Recommended Use and Gradation Criteria For Fill Materials

USE OF FILL MATERIAL

<u>Structural Fill:</u> For use as fill within the structure area, except where Select Fill is specified.

<u>Select Fill:</u> Areas requiring free draining, non-frost susceptible backfill such as retaining walls and slab-ongrade base course.

<u>Crushed Stone:</u> Footing drains, slab-on-grade base course, and in wet conditions to aid in dewatering should consist of 3/8- to ¾-inch minus angular crushed stone and should consist of MASSDOT Standard Specifications for Highways and Bridges, 2024 Edition, Division III, M2.01.0: Crushed Stone, gradation M2.01.4 (3/4") to M2.01.5 (3/8"). Where crushed stone is greater than 4 inches thick, the Crushed Stone must be wrapped with Geotextile Fabric.

<u>Processed Aggregate Base</u> below pavements should consist of MASSDOT Standard Specifications for Highways and Bridges, 2024 Edition, Division III, M1.03.1: Processed Gravel for Subbase.

<u>Pavement Subbase</u> below pavements should consist of MASSDOT Standard Specifications for Highways and Bridges, 2024 Edition, Division III, M1.03.1: Processed Gravel for Subbase.

<u>Geotextile Fabric</u> should be used to separate crushed stone from surrounding soils. The fabric should consist of a filtration-type non-woven geotextile (Mirafi 140N or approved equal).

<u>Ordinary Fill</u> for use as general fill and backfill in landscaped areas should be friable inorganic soil essentially free of trash, ice, snow, tree stumps, roots and organic materials. Ordinary fill shall contain no stone or rubble exceeding two-thirds of the specified loose lift thickness for material placement.

<u>Controlled Low Strength Material</u> for use below structures or with utilities should meet the requirements of MASSDOT Standard Specifications for Highways and Bridges, 2024 Edition, Division III, M4.08.0: Controlled Low-Strength Materials.

Sieve	Size	Percent Finer by Weight			
Structural Fill	Shall be free from id	ce and snow, roots, sod, rubbish and other			
	deleterious or orga	nic matter. Structural Fill shall conform to the			
	following gradation	requirements:			
3 in	ch	100			
No	. 4	40 – 85			
No.	40	10 - 50			
No.	200	0-12			
Select Fill	Shall consist of dura	able sand and gravel and shall be free from ice and			
	snow, roots, sod, ru	ubbish and other deleterious or organic matter.			
	Select Fill shall conf	orm to the following gradation requirements:			
3 in	ch	100			
No.	10	30 – 95			
No.	40	10 - 70			
No.	200	0-6			

GRADATION REQUIREMENTS

Table 3: Compaction Methods

The recommended minimum degree of compaction for fill and backfill, based on percentage of maximum dry density as determined by ASTM D1557 (modified Proctor), is:

Below the Foundations and Slab-on-Grade	-	95%
Pavement/Sidewalk Base and Subbase	-	95%
Adjacent to exterior Foundation Walls	-	92%
Within 3ft laterally of Retaining Walls	-	92%
Utility Trenches (within 1½ feet of surface)	-	95%
Utility Trenches (more than 1½ feet below surface)	-	92%
Areas of General Landscape	-	90%

Recommended maximum loose lift thicknesses for soil fill and the minimum number of passes of compaction equipment are summarized on the following table. Specifications should require the contractor to adjust loose lift thicknesses as required to meet the required compaction requirements

		Maximum L	oose Lift	Minimum	lumber of	
				Desses		
	Iviax.	Inickn	ess	Passes		
	Stone	Below	Less	Below	Less	
Compaction Method	Size*	Structures	Critical	Structures	Critical	
		and	Area	and	Area	
		Pavement		Pavement		
STRUCTURAL	FILL, SELEC	T FILL, CRUSHE	D STONE			
Hand-operated vibratory plate or	2″	6"	Q"	6	Л	
light roller in confined areas	5	0	0	0	4	
Hand-operated vibratory drum						
rollers weighing at least 1,000# in	6"	8″	10"	6	4	
confined areas						
Light vibratory drum roller, minimum						
dynamic force 3,000# per foot of	6"	10"	14"	6	4	
drum width						
Medium to heavy vibratory drum						
roller, minimum dynamic force	8″	12″	18"	6	4	
5,000# per foot of drum width						

* Indicates not to exceed more than 2/3 the lift thickness

The Contractor should reduce or stop drum vibration if pumping or weaving of the subgrade is observed. Crushed Stone should be compacted to create an unyielding surface.

Compaction within 3-feet of retaining and foundation walls should be performed using hand-operated roller or plate compactors to reduce the potential for construction-induced damage to the walls. Extra care should be used when compacting adjacent to walls.

Figures

Pepperell 111 Main S East Pepperell Townend St

GENERAL NOTES

- 1. BASE MAP DEVELOPED FROM AN AUTOCAD DRAWING TITLED "16694.00 - PR.DWG" PREPARED BY, VHB, TRANSMITTED VIA EMAIL ON MAY 5, 2025.
- 2. THE LOCATIONS OF THE TEST BORINGS WERE APPROXIMATELY DETERMINED BY GZA PERSONNEL USING LINE OF SIGHT FROM EXISTING SITE FEATURES. THE LOCATIONS SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHODS USED.
- 3. THE PURPOSE OF THIS DRAWING IS TO LOCATE, DESCRIBE, AND REPRESENT THE POSITION OF THE TEST BORINGS IN RELATION TO THE SUBJECT SITE. THIS DRAWING IS NOT CONSIDERED A LAND SURVEY.
- 4. PARCEL INFORMATION FROM MASSMAPPER PARCEL DATA.
- 5. SEE TEST BORING LOGS IN APPENDIX B FOR ADDITIONAL INFORMATION.

<u>LEGEND</u>

INDICATES TEST BORINGS PERFORMED BY GEOSEARCH BETWEEN APRIL 15 AND 17, 2025 GZ-1 AND LOGGED BY GZA PERSONNEL.

ISSUE/DESCRIPTION BY DATE NO. NO. BY DARKET AND A CONTROLOGY OF A STATE OF

PROPOSED MEDICAL DEVELOPMENT 500 MAIN STREET GROTON, MASSACHUSETTS

EXPLORATION LOCATION PLAN

PREPARED BY:		PREPARED FOR:				
GZA Geo Engine	Environmental, Inc. ers and Scientists www.gza.com	THE SLAM COLLABORATIVE				
PROJ MGR: CGE	REVIEWED BY: DMB	CHECKED BY: NR	FIGURE			
DESIGNED BY: AK	DRAWN BY: CGE/PW	SCALE: AS NOTED	`			
DATE:	PROJECT NO.	REVISION NO.	L Z			
9 APRIL 2025	05.0047465.00	-	SHEET NO 1 OF 1			

Appendix A – Limitations

GEOTECHNICAL LIMITATIONS 05.0047465.00 Page | 1

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, express or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.
- 7. Water level readings have been made in test holes (as described in this Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.
- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.

9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

COMPLIANCE WITH CODES AND REGULATIONS

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

COST ESTIMATES

11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes. These estimates may involve approximate quantity evaluations. Note that these quantity estimates are not intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Report.

ADDITIONAL SERVICES

12. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

Appendix B – Test Boring Logs

LOG KEY

GZA Geo Environmental, Inc. Engineers and Scientists

					7 Y A C C II I/ Y A I I/ YAI		
	NAME	חם					
COMPONENT	NAME	FR	TERM	WEIGHT	Material	PI Atterberg T	hread Dia.
IAJOR GI	RAVEL, SAND), FINES*		>50	SILT	0 Cannot	Roll
Minor	Gravel, Sand	l, Fines*	and	35-50	Clayey SILT	1-5 1/4	t
			some	20-35	SILT & CLAY	5-10 1/8	3"
			little	10-20	CLAY & SILT	10-20 1/	16"
see identification o	of fines table		trace	0-10	CLAY	20-40 1/	32" 64"
			Sieve Size		Description	n	
			Passing #200		Silts & Clay	/S	
			#200 - #40		Fine Sand	3	
			#40 - #10		Medium Sa	nd	
			#10 - #4		Coarse San	d	
			# 4 – ¾″		Fine Gravel	l	
			³ /4" – 3"		Coarse Gra	vel	
			3" – 6"		Cobbles		
			>6″		Boulders		
		DDOD		PLA	STIC SOILS	GRAVEL	& SAND
		COMP		Consistency	Blows/Ft. SPT N-Value	Density	Blows/Ft. SPT N-Value
Fine to coa	irse	All fraction	01VEIVI 1s > 10%	Verv Soft	< 2	Verv Loose	< 4
Medium to	coarse	<10% fine	9	Soft	2 - 4	Loose	4 - 10
Fine to me	dium	<10% coa	irse	Medium Stif	f 4-8	Medium Dense	10 - 30
Coarse		<10% fine	e and medium	Stiff	8 - 15	Dense	30 - 50
Medium		<10% coa	rse and fine	Very Stiff	15 - 30	Very Dense	> 50
Fine		<10% coa	rse and medium	Hard	>30		
			UNIFIED SOIL C	LASSIFICATION SY	STEM (USCS) (ASTM D	2487)	
AJOR DIVISIONS	5					Group Symbols	
oarse Grained So	oils			Gravel	Clean Gravels	GŴ	
/lore than 50% of	f material		Mo	re than 50%	(Little or no fin	es GP	
arger than No. 200	0 sieve.		larger the	an No. 4 sieve.			
ravels with Fines						GM	
Appreciable amou	unt of fines)					GC	
Sand					Clean Sands	SW	
			Mor smaller t	e than 50%	(Little or no fines	s) SP	
ands with Fines			Sindhert	nan No. 4 sieve.		SM	
Appreciable amor	unt of fines)					SC	
						ML	
					Silts and Clays Liquid Li	imit <50	
Fine Grained Soils	5 f motorial					CL	
mallor than No. 7	r material					01	
	Loo sieve.						
ilts and CLavs Lic	uid Limit >5	0				СН	
	1414	•				ОН	
Highly Organic So	oils					Pt	
				ORGANIC SOIL	CLASSIFICATION		
							of deposit.
Fibrous PEAT (Pt)) - Lightweig	ht, spongy	, mostly visible or	ganic matter, water	squeezes readily from	sample. Typically near top	
Fibrous PEAT (Pt) Fine Grained PEA) - Lightweig \T (Pt) - Light	ht, spongy weight, sp	ongy, little visible or	ganic matter, water organic matter, wa	r squeezes readily from ater squeezes readily fr	sample. Typically near top om sample. Typically below	v fibrous peat.
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL)) - Lightweig T (Pt) - Light - Typically g	ht, spongy weight, sp ray to dark	ongy, little visible org ongy, little visible gray, often has st	ganic matter, water organic matter, wa trong H2S odor. Typ od fractions	r squeezes readily from ater squeezes readily fro bically contains shells of	sample. Typically near top om sample. Typically below r shell fragments. Lightwei	v fibrous peat. ght. Usually
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coasta Organic Clay (OH) - Lightweig IT (Pt) - Ligh - Typically g al regions. M I) - Typically	ht, spongy tweight, sp ray to dark ay contain gray to dar	, mostly visible org ongy, little visible gray, often has st wide range of san ck gray, high plast	ganic matter, water organic matter, wa trong H2S odor. Typ Id fractions. icity, Usually found	r squeezes readily from ater squeezes readily fro bically contains shells of near coastal regions. M	sample. Typically near top om sample. Typically belov r shell fragments. Lightwei Nav contain wide range of s	v fibrous peat. ght. Usually
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coasta Organic Clay (OH Need organic con) - Lightweig T (Pt) - Ligh - Typically g al regions. M I) - Typically ntent test for	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident	, mostly visible org ongy, little visible gray, often has st wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa trong H2S odor. Typ Id fractions. icity. Usually found	r squeezes readily from ater squeezes readily fr pically contains shells o near coastal regions. N	sample. Typically near top om sample. Typically below r shell fragments. Lightwei Aay contain wide range of s	v fibrous peat. ght. Usually and fractions.
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coasta Organic Clay (OH Need organic con) - Lightweig IT (Pt) - Ligh - Typically g al regions. M I) - Typically itent test for	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident	, mostly visible org bongy, little visible c gray, often has st wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa trong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily fr pically contains shells o near coastal regions. N	sample. Typically near top om sample. Typically belov r shell fragments. Lightwei Nay contain wide range of s	v fibrous peat. ght. Usually and fractions.
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coast: Organic Clay (OH Need organic con MR = Mud Rotary) - Lightweig T (Pt) - Ligh - Typically g al regions. M I) - Typically ntent test for	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident	, mostly visible org bongy, little visible gray, often has si wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa rrong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily fr bically contains shells of near coastal regions. N FIONS Tv = Field N	sample. Typically near top om sample. Typically belov r shell fragments. Lightwei Aay contain wide range of s Vane Shear Test (Torvane)	v fibrous peat. ght. Usually and fractions. Shear Strength
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coast: Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste) - Lightweig IT (Pt) - Ligh - Typically g al regions. M I) - Typically itent test for tent test for	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident	, mostly visible org bongy, little visible gray, often has st wide range of san k gray, high plast ification.	ganic matter, water organic matter, wa irong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily fr pically contains shells of near coastal regions. N FIONS Tv = Field N PP = Pocke	sample. Typically near top om sample. Typically belov r shell fragments. Lightwei Nay contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stree	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coast: Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem) - Lightweig IT (Pt) - Ligh - Typically g al regions. M I) - Typically itent test for tent test for y em Auger	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident	, mostly visible org bongy, little visible s gray, often has st wide range of san k gray, high plast ification.	ganic matter, water organic matter, wa rrong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily from near coastal regions. M FIONS Tv = Field N PP = Pocke PI = Plastic	sample. Typically near top om sample. Typically belov r shell fragments. Lightwei lay contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coast Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem SS = Split Spoon) - Lightweig IT (Pt) - Ligh - Typically g al regions. M I) - Typically itent test for tent test for y em Auger Sampler	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident	, mostly visible org bongy, little visible c gray, often has st wide range of san k gray, high plast ification.	ganic matter, water organic matter, wa trong H2S odor. Typ Id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily fr pically contains shells of near coastal regions. N FIONS Tv = Field N PP = Pocke PI = Plastic Wn = Moist	sample. Typically near top om sample. Typically belov r shell fragments. Lightwei lay contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index ture Content	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coast: Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem SS = Split Spoon U = Undisturbed) - Lightweig IT (Pt) - Ligh - Typically g al regions. M I) - Typically ntent test for we em Auger Auger Sample Sample (She oliferation	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident lby Tube)	, mostly visible or bongy, little visible gray, often has si wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa irong H2S odor. Typ Id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily fr pically contains shells of near coastal regions. N FIONS Tv = Field N PP = Pocke PI = Plastic Wn = Moist CO = Const	sample. Typically near top om sample. Typically below r shell fragments. Lightwei May contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index ture Content olidation	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth
Fibrous PEAT (Pť) Fine Grained PEA Organic Silt (OL) found near coasti Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem SS = Split Spoon U = Undisturbed MC = Modified Ca V = Vierocco) - Lightweig T (Pt) - Lighi - Typically g al regions. M I) - Typically ntent test for y em Auger n Auger Sampler Sample (She alifornia Sam	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident lby Tube) pler	, mostly visible or pongy, little visible gray, often has si wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa irong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily fro ncially contains shells of near coastal regions. N FIONS Tv = Field N PP = Pocke PI = Plastic Wn = Moist CO = Conso UC = Uncon	sample. Typically near top om sample. Typically below r shell fragments. Lightwei May contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index ture Content olidation nfined Compression Test neolidated Undersided (Total	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coast: Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem SS = Split Spoon U = Undisturbed MC = Modified Ca V = Vibracore M = Macrocore) - Lightweig IT (Pt) - Lighi - Typically g al regions. M I) - Typically ntent test for tent test for em Auger Auger Sampler Sample (She alifornia Sam	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident lby Tube) pler	, mostly visible or bongy, little visible c gray, often has si wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa irong H2S odor. Typ Id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily from ocally contains shells of near coastal regions. N FIONS TV = Field N PP = Pocke PI = Plastic Wn = Moist CO = Conse UC = Uncoi UU = Uncoi SI = Sieve	sample. Typically near top om sample. Typically below r shell fragments. Lightwei May contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index ture Content olidation nfined Compression Test nsolidated Undrained (Tria Analysis	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth xial) Test
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coasta Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem SS = Split Spoon U = Undisturbed MC = Modified Ca V = Vibracore M = Macrocore) - Lightweig IT (Pt) - Ligh - Typically g al regions. M I) - Typically thent test for tent test for Auger Auger Sampler Sample (She alifornia Sam	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident lby Tube) pler	, mostly visible or bongy, little visible : gray, often has si wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa irong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily from ocally contains shells of near coastal regions. N PP = Pocke PI = Plastic Wn = Moist CO = Conso UC = Uncol UU = Uncol SI = Sieve DS = Dire	sample. Typically near top om sample. Typically below r shell fragments. Lightwei May contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index ture Content olidation nfined Compression Test nsolidated Undrained (Tria Analysis ect Shear	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth xial) Test
Fibrous PEAT (Pt) Fine Grained PEA Organic Silt (OL) found near coast: Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem SS = Split Spoon U = Undisturbed MC = Modified Ca V = Vibracore M = Macrocore USCS = Unified S) - Lightweig T (Pt) - Lighi - Typically g al regions. M I) - Typically ntent test for y em Auger h Auger Sampler Sample (She alifornia Sam soil Classifica	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident lby Tube) pler tion Syster	, mostly visible or pongy, little visible c gray, often has si wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa irong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily from ocally contains shells of near coastal regions. N TV = Field N PP = Pocke PI = Plastic Wn = Moist CO = Conse UC = Uncol UU = Uncol SI = Sieve DS = Dire PID = Phot	sample. Typically near top om sample. Typically below r shell fragments. Lightwei May contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index ture Content olidation nfined Compression Test nsolidated Undrained (Tria Analysis tot Shear toionization Detector	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth xial) Test
Fibrous PEAT (Pť) Fine Grained PEA Organic Silt (OL) found near coasti Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem SS = Split Spoon U = Undisturbed MC = Modified Ca V = Vibracore M = Macrocore USCS = Unified So NYCBC = New Yo) - Lightweig T (Pt) - Ligh' - Typically g al regions. M I) - Typically ntent test for y em Auger Sampler Sampler Sample (She alifornia Sam Soil Classifica ork City Build	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident lby Tube) pler tion Syster ing Code	, mostly visible or pongy, little visible ; gray, often has si wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa irong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily from near coastal regions. N TV = Field N PP = Pocke PI = Plastic Wn = Moisi CO = Conso UC = Uncoo SI = Sieve DS = Dire PID = Phot ppm = Part	sample. Typically near top om sample. Typically below r shell fragments. Lightwei May contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index ture Content olidation nfined Compression Test nsolidated Undrained (Tria Analysis set Shear toionization Detector ts Per Million	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth xial) Test
Fibrous PEAT (Pť) Fine Grained PEA Organic Silt (OL) found near coasta Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem SS = Split Spoon U = Undisturbed MC = Modified Ca V = Vibracore M = Macrocore USCS = Unified So NYCBC = New Yo WOR = Weight of) - Lightweig T (Pt) - Light - Typically g al regions. M I) - Typically ntent test for y em Auger Sampler Sampler Sample (She alifornia Sam Goil Classifica ork City Build f Rods Luameran	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident lby Tube) pler tion Syster ing Code	, mostly visible or pongy, little visible ; gray, often has st wide range of san rk gray, high plast ification.	ganic matter, water organic matter, wa trong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily from near coastal regions. N TV = Field N PP = Pocke PI = Plastic Wn = Moisi CO = Conso UC = Uncoo UU = Uncoo SI = Sieve DS = Dire PID = Phot ppm = Part REC = Recc	sample. Typically near top om sample. Typically below r shell fragments. Lightwei May contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index ture Content olidation nfined Compression Test nsolidated Undrained (Tria Analysis et Shear toionization Detector ts Per Million overy	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth xial) Test
Fibrous PEAT (Pť) Fine Grained PEA Organic Silt (OL) found near coast: Organic Clay (OH Need organic con MR = Mud Rotary HSA = Hollow Ste SSA = Solid Stem SS = Split Spoon U = Undisturbed MC = Modified Ca V = Vibracore M = Macrocore USCS = Unified S NYCBC = New Yo WOR = Weight of SPT = Standard) - Lightweig T (Pt) - Light - Typically g al regions. M I) - Typically ntent test for y em Auger Sampler Sampler Sample (She alifornia Sam Soil Classifica ork City Build f Rods F Hammer Penetration 7	ht, spongy tweight, sp ray to dark ay contain gray to dar final ident lby Tube) pler tion Syster ing Code	, mostly visible or pongy, little visible gray, often has si wide range of san rk gray, high plast ification. m (ASTM D2487)	ganic matter, water organic matter, wa trong H2S odor. Typ id fractions. icity. Usually found ABBREVIA	r squeezes readily from ater squeezes readily from near coastal regions. N TV = Field N PP = Pocke PI = Plastic Wn = Mois CO = Conso UC = Uncoo UU = Uncoo UU = Uncoo UU = Uncoo SI = Sieve DS = Dire PID = Phot ppm = Part REC = Reco ROD = Roc	sample. Typically near top om sample. Typically below r shell fragments. Lightwei May contain wide range of s Vane Shear Test (Torvane) et Penetrometer Shear Stre city Index ture Content olidation nfined Compression Test nsolidated Undrained (Tria Analysis ect Shear toionization Detector ts Per Million povery k Quality Designation asured Water Level	v fibrous peat. ght. Usually sand fractions. Shear Strength ngth xial) Test

								TEST BORI	NG LOG							
G		GZA GeoEi Inginee	nviron rs and S	men Scienti	tal,]	EXPLORATI SHEET: PROJECT N REVIEWED	ON N 1 O: 05 3Y: F	0.: 0 of 1 5.0047 9. Wate	6Z-1 465.00 ers							
Logg Drilli Fore	ged By: ing Co.: man:	L. Pat GeoS P. Mc	tershall earch Clenche	en			Type of Rig Mo Drilling	f Rig: ATV del: CME-55LC j Method: HSA	Boring Loc Ground Su Final Borin Date Start	ation: Se rface Elev g Depth (- Finish: 4	ee Plan /. (ft.): 235.5 ft.): 12 /16/2025 - 4/16	/2025	F V 5	I. Datur /. Datur	n:Project n: NAVD 88	3
Ham	mer Ty	be: Au	tomatic	Hamr	ner		Sample	er Type: SS		Date	Ground	lwate	r Dept	h (ft.)	Stah Ti	imo
Ham Ham Auge	mer We mer Fal er or Ca	eight (I II (in.): sing C	b.): 14 30 D.D./I.D	40 Dia (i	n.): 3-	1/4, 7-1/8	Sample Sample Core B	ar O.D. (in.): 2.0 ar Length (in.): 24 arrel Size: NA		4/16/25	5		9'		5 mir	1
Depth (ft)	Blows/ Core	No.	Depth	Pen.	Rec.	Blows	SPT	Sample De (Modifie	escription and d Burmister	d Identifica Procedure	tion	emar	Field Test	Cepth (ft.)	STRATUM Description	(ff.) (ff.)
()	Rate	SS-1	(ft.) 0-2	(in) 24	(in) 10	(per 6 in. 3 9) Value 20	SS-1 : Top 6": Dark bro	own, tan, fine	to coarse	, SAND, some	<u> </u>	Data	0.5	TOPSOIL	
-	-	SS-2	2-4	24	13	11 9 2 2 2 1	4	Silt, trace Roots Bottom 4": Grey, fine to Silt SS-2 : Very loose, dark some Silt, little Gravel	o coarse SAN c brown, tan,	ND, some (fine to me	Gravel, some dium SAND,				FILL	
5_	-	SS-3	5-7	24	16	6 10 10 18	20	SS-3 : Top 3": Dark bro trace roots	own, fine to n	nedium SA	ND, some Silt,			6		_229.5
-	-	SS-4	7-9	24	18	15 22 28 40	50	Bottom 13": Brown, tar Gravel SS-4 : Top 7": Tan, ora	n, fine to coar ange, fine to r	rse SAND	AND and SILT, trace					
10 _	-	SS-5	9-11	24	24	13 66 110 162	R 2	Bottom 11": Brown, gre some Silt SS-5 : Very dense, dar and GRAVEL, some Si	ey, fine to coa k grey, browr ilt (wet)	arse SAND	and GRAVEL,	1		12	GLACIAL TILL	223.5
	10 - SS-5 9-11 24 24 13 66 110 162 R Bottom 11": Brown, grey, fine to coarse SAND and GRAVEL, some Silt or SS-5 1 1 12 223.5 15 - - - - - - 12 223.5 20 -															
Strati	ification	lines r	epresen	t appr	oxima	te bounda	ries betv	ween soil and bedrock ty	pes. Actual ti	ransitions	may be gradual			Exp	loration I GZ-1	No.:

								TEST BORI	NG LOG								
G		GZA GeoEi Enginee	nviron ers and S	men cienti:	tal,]	Inc.		500 Main S Groton, Massa	treet chusetts		EXPI SHEI PRO REVI	LORATIO ET: JECT NO: IEWED B	N NC 1 c : 05 Y: P	D.: G of 1 .00474 .Wate	Z-2 165.00 ers		
Logo Drill Fore	ged By: ing Co. eman:	K. Pe GeoS P. Mo	ters earch :Clenche	n			Type of Rig Mo Drilling	f Rig: ATV del: CME-55LC J Method: HSA	Boring Loo Ground Su Final Borin Date Start	ation: Se rface Elev ng Depth (f - Finish: 4	e Plan /. (ft.): ft.): 1: /15/202	232 5.2 25 - 4/15/2	2025	H V	l. Datu . Datu	m:Project m: NAVD 8	8
Ham	mer Ty	pe: Au	Itomatic	Hamr	ner		Sample	er Type: SS		Data		Groundw	ate	Dept	h (ft.)	Stop T	imo
Ham Ham Aug	mer We mer Fa er or Ca	eight (l II (in.): Ising (l b.): 14 : 30 D.D./I.D	10 Dia (i	n.): 3-	1/4, 7-1/8	Sample Sample Core B	er O.D. (in.): 2.0 er Length (in.): 24 arrel Size: NA		4/15/25	5	Time		7'	eptii	5 mi	n
Depth (ft)	Casing Blows/ Core	No.	Depth	Samp Pen.	le Rec.	Blows	SPT	Sample De (Modifie	escription and d Burmister	l d Identifica Procedure	ition		emark	Field Test	Depth (ft.)	STRATUM Description	(ft.) (ft.)
-	Rate	SS-1	0-2	24	7	3 1 WOH 1) value 1	SS-1 : Very loose, brow Gravel, some Silt, some	vn, fine to me e Roots	edium SAN	ID, som	ne	<u></u>	Dala	- 0 .4- —	<u>TOPSOIL</u> FILL	—2 3 1 .6
	-	SS-2	2-4	24	11	46 912	15	SS-2 : Medium dense, SILT, trace Gravel	brown, fine t	o medium	SAND	and			2		_230.0
5_	-	SS-3	5-7	24	6	7 11 10 10	21	SS-3 : Medium dense, GRAVEL, little Silt	light brown, 1	fine to coa	rse SAN	ND and					
	-	SS-4	7-9	24	5	12 11 16 25	27	SS-4 : Medium dense, GRAVEL, little Silt (wet	light brown, i :)	fine to coai	rse SAN	ND and	1 2			GLACIAL TILI	L
10 _	SS-5 10- 4 4 50/4" SS-5 : Light brown, grey, fine to coarse SAND and GRAVEL 10.4 SS-5 : Light brown, grey, fine to coarse SAND and GRAVEL																
15 _	-	SS-6	15-	2	2	50/2"		SS-6 : Very dense, ligh	t brown, grey	, GRAVE	L and fi	ine to	3		15.2		216.8
.00.2 0202112/0			15.2					coarse SAND, trace Sil End of exploration at 15	t 5.2 feet belov	v grade.							
20 _	-																
25 _	-																
	-																
30 1	- Wet sn	oon at S	S-4.														
	2 - Auger c 3 - Split sp	hatter be	etween 7 a sat at 15.2	nd 151 feet be	feet bel elow gr	ow ground s ound surface	urface. e. Borehole	e backfilled with spoils.									
Strat	ification	lines r	epresent	appr	oxima	te bounda	ries betv	ween soil and bedrock ty	pes. Actual t	ransitions i	may be	gradual.			Ехр	loration GZ-2	No.:

								TEST BORIN	G LOG							
G	77)	GZA GeoE Enginee	nviron ers and S	men Scienti	tal,	Inc.		500 Main Str Groton, Massacl	reet husetts		EXPLORATIO SHEET: PROJECT NO REVIEWED B	N NC 1 c : 05 Y: P	D.: G of 1 .00474 . Wate	Z-3 65.00 ers		
Lo Dr Fo	ogged By illing Co oreman:	: K. Pe : GeoS P. Mo	ters Search Clenche	en		-	Type of Rig Mo Drilling	fRig: ATV E del: CME-55LC G JMethod: HSA E	Boring Loc Ground Su Final Borin Date Start	ation: See rface Elev. g Depth (ft - Finish: 4/1	Plan (ft.): 228 .): 6.3 15/2025 - 4/15/2	2025	H V	. Datuı . Datur	m:Project m: NAVD 88	3
На	mmer Ty	ype: Au	utomatic	Hamr	ner	:	Sample	er Type: SS		Dete	Groundy	vate	r Dept	h (ft.)	Otab T	
Ha	Immer W	/eight(all (in)	lb.): 1₄ ∙ 30	40			Sample Sample	er O.D. (in.): 2.0 er Lenath (in.): 24		4/15/25	Time	Not	Encou	intered	Stad. 11	me
Au	iger or C	asing (D.D./I.D	Dia (i	n.): 3	-1/4, 7-1/8	Core B	arrel Size: NA								
Dep (ft	oth Blows () Core	/ / No.	Depth	Samp Pen.	Rec.	Blows	SPT	Sample Des (Modified	cription and Burmister	d Identificati Procedure)	on	temark	Field Test	Depth (ft.)	STRATUM Description	Elev. (ft.)
	Rate	SS-1	0-2	24	13	6 5	9	SS-1 : Loose, light browr	n, fine to co	arse SAND	and GRAVEL,	Ľ.	Data	_		
	1					44		some Silt, trace Roots								
		SS-2	2-4	24	7	10 12 13 12	25	SS-2 : Medium dense, lig and GRAVEL, little Silt	ght brown, g	grey, fine to	coarse SAND				FILL	
5	-	SS-3 5-6.3 15 13 6 11 SS-3 : Light brown, grey, fine to coarse SAND, some Gravel some Silt												5	GLACIAL TILL	_223.0
	-	- 50/3" some Silt - End of exploration at 6.3 feet below grade.												6.3		221.7
	End of exploration at 6.3 feet below grade.															
10																
	-															
₅ 15	-															
2:30:38 P																
97071171	_															
11.GLB 3																
20	'-															
arJ LIBK																
g LUGS.C																
	; _															
NG 4/40	-															
Mb_CASI																
	_															
	1 - Split s 2 - Boreh	poon refu ole backfi	sal at 6.5 f lled with s	feet bel poils.	low gro	und surface. I	Boring of	set to GZ-3A.				1	1			
NRKS																
9.GUI 6																
Str	ratification	n lines r	epresent	t appr	oxima	ite boundar	ries betv	ween soil and bedrock type	es. Actual ti	ransitions m	ay be gradual.			Ехр	loration I GZ-3	No.:
·																

									TEST BORI	NG LOG							
	GZ	GZA GeoEnvironmental, Inc. Engineers and Scientists 500 Main Street Groton, Massachusetts EXPLORAT SHEET: PROJECT N REVIEWED gged By: K. Peters illing Co.: GeoSearch Type of Rig: ATV Rig Model: CME-55LC Boring Location: See Plan Ground Surface Elev. (ft.): 228 Einal Boring Death (ft): 138															
	Logg Drilli Fore	ed By: ng Co.: man:	K. Pe GeoS P. Mc	ters earch Clenche	en			Type of Rig Mo Drilling	^E Rig: ATV del: CME-55LC J Method: HSA	Boring Loc Ground Su Final Borin Date Start	ation: Se rface Elev g Depth (f - Finish: 4)	e Plan 7. (ft.): 228 ft.): 13.8 /15/2025 - 4/15/	2025	V	. Datu . Datu	m:Project m: NAVD 88	3
	Hamı	ner Tyj	be: Au	tomatic	Hamr	ner		Sample	er Type: SS		Dete	Ground	wate	r Dept	h (ft.)	04-1-7	
	Hamı Hamı Auge	ner We ner Fal r or Ca	ight (l l (in.): sing (b.): 1 30).D./I.D	40 Dia (i	n.): 3-	1/4, 7-1/8	Sample Sample Core B	er O.D. (in.): 2.0 er Length (in.): 24 arrel Size: NA		4/15/25			10'	eptn	5 mir	ne 1
C	Depth	Blows/ Core	No	Depth	Pen.	Rec.	Blows	SPT	Sample Do (Modifie	escription and ed Burmister	d Identifica Procedure	tion	emark	Field Test)epth (ft.)	STRATUM Description	Elev. (ft.)
-	(11)	Rate	110.	(ft.) 0-10	(in)	(in)	(per 6 in	.) Value	: Augered to 10 feet.		Troccoure)	1	Data			ш
	- - 5_ - -	5 -														FILL	223.0
	- 10 _ -	SS-1 10- 5 4 50/5" SS-1 : Light brown, GRAVEL and fine to coarse SAND, little Silt														GLACIAL TILL	
	-																
	-		SS-2	13.5- 13.8	3	3	50/3"		SS-2 : Dark brown, GF Silt	RAVEL and fi	ne to coars	e SAND, little	5		13.8		214.2
	SS-2 13.5. 3 3 50/3" SS-2: Dark brown, GRAVEL and fine to coarse SAND, little 4 13.8 214.2 Still End of exploration at 13.8 feet below grade. 20 13.8 13.8 13.8 214.2 20 13.8 13.8 14.4 13.8 214.2 20 13.8 14.4 13.8 14.4 13.8 214.2 20 13.8 14.4 13.8 14.4 13.8 214.2 20 14.4 13.8 14.4 13.8 14.4 14.4 20 14.4 14.4 14.4 14.4 14.4 14.4 14.4 20 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 20 14.4<																
50100	Strati	fication	lines r	epresen	t appr	oxima	te bounda	aries betv	ween soil and bedrock ty	rpes. Actual ti	ransitions r	may be gradual.			Ехр	loration I GZ-3A	No.:

										TEST BORI	NG LOG							
Ċ	ر بر		GZA GeoEi Inginee	nviron rs and S	men cienti	sts	Inc.			500 Main S Groton, Massa	treet chusetts		EXPLORATIO SHEET: PROJECT NO REVIEWED B	N NC 1 c : 05 Y: P	D.: G of 1 .00474 . Wate	Z-4 165.00 ers		
L D F	ogg rilli ore	jed By: ing Co.: man:	K. Pel GeoS P. Mc	ters earch Clenche	n			Typ Rig Dri	pe of g Moo illing	Rig: ATV del: CME-55LC Method: HSA	Boring Loo Ground Su Final Borir Date Start	cation: See Inface Elev. Ing Depth (ff - Finish: 4/	e Plan (ft.): 224): 20.2 15/2025 - 4/15/2	2025	H V	. Datu . Datu	I m: Project I m: NAVD 88	3
н	lam	mer Tyj	be: Au	tomatic	Hamr	ner		Sar	mple	r Type: SS		Data	Groundy	vate	r Dept	h (ft.)	Stab Ti	imo
H H A	lami lami lage	mer We mer Fal er or Ca	ight (l l (in.): sing C	b.): 14 30).D./I.D	40 Dia (i	n.): 3	-1/4, 7-1/8	Sar Sar Cor	mple mple ore Ba	r O.D. (in.): 2.0 r Length (in.): 24 arrel Size: NA		4/15/25			10	eptii	5 mir	ווופ ו
De	epth	Casing Blows/ Core	No.	Depth	Samp Pen.	Rec.	Blows		SPT	Sample De (Modifie	escription and	d Identificati Procedure)	on	emark	Field Test	(ft.)	STRATUM	(ff.)
		Rate	SS-1	(ft.) 0-2	24	(in) 12	(per 6 ir 5 6 4 10	1.) V	/alue 10	SS-1 : Loose, light brow little Silt, trace Roots	vn, fine to co	, barse SAND	and GRAVEL,	Ĕ	Data	-0 .2		- 223. 8-
	-		SS-2	2-4	24	15	98 98		17	SS-2 : Medium dense, and SILT, little Gravel	grey, light br	rown, fine to	coarse SAND			4.5	FILL	240 5
:	5 - -		SS-3	5-7	24	15	45 1112		16	SS-3 : Top 10": Grey, li Clayey SILT, little Grave Bottom 5": Brown, fine Silt	ight brown, fi el to coarse SA	ine to mediu AND and GF	m SAND RAVEL, some			4.5		_219.5
1	- 0 -		SS-4	10-12	24	14	34 21 16 20		37	SS-4 : Dense, light brov SAND, some Silt (wet)	wn, grey, GF	RAVEL and t	îne to coarse	1 2			GLACIAL TILL	
MI 65:05:2 50021/2/0	- 5 _ -		SS-5	15- 16.8	22	13	19 32 51 50/4	1"	83	SS-5 : Very dense, grey and GRAVEL, little Silt	y, light browr	n, fine to coa	arse SAND					
5KARY 012111.GLB	- 0 		SS-6	20- 20.2	2	1.5	50/2"			SS-6 : Grey, light brown little Silt	n, GRAVEL :	and fine to c	coarse SAND,	3 4		20.2		203.8
j LOGS.GPJ LIL	-									End of exploration at 20).2 feet below	w grade.		-				
CASING 4/405 BURIN	- 5 -																	
COUL GZA LEMPLAIE LEST BU REMARKS	1 2 3 4	- Wet spo - Rig cha - Split spo - Borehol	oon at S tter obse oon refu e backfil	S-4. rved while sat at 20.2 led with sp	e advar feet b poils.	ncing fro elow gr	om 10 to 20 ound surfac	feet b	below	ground surface.								
SONIC LOG	trati	fication	lines re	epresent	t appr	oxima	ate bound	aries	s betv	veen soil and bedrock ty	pes. Actual t	ransitions m	ay be gradual.			Exp	loration GZ-4	No.:

									TEST BORI	NG LOG							
	G		GZA GeoEi Inginee	nviron ers and S	men cienti:	tal,]	EXPLORATIC SHEET: PROJECT NO REVIEWED B	0N N(1 (): 05 Y: P	D.: G of 1 .00474 .Wate	Z-5 165.00 ers							
	Logg Drilli Fore	ed By: ng Co.: man:	L. Pat GeoS P. Mc	ttershall earch :Clenche	n			Type of Rig Moo Drilling	Rig: ATV del: CME-55LC Method: HSA	Boring Loc Ground Su Final Borin Date Start	ation: Se rface Elev g Depth (f - Finish: 4/	e Plan . (ft.): 218.5 (t.): 18.6 (17/2025 - 4/17/	2025	V	l. Datun '. Datun	n:Project n: NAVD 88	3
	Hami	mer Ty	be: Au	Itomatic	Hamr	ner		Sample	er Type: SS		Data	Ground	wate	r Dept	h (ft.)	Stab T	-
	Hami Hami Auge	mer We mer Fal er or Ca	eight (l I (in.): sing C	b.): 14 : 30 D.D./I.D	40 Dia (i	n.): ^{3.}	1/4, 7-1/8	Sample Sample Core Ba	er O.D. (in.): 2.0 er Length (in.): 24 arrel Size: NA		4/17/25			4'		5 mir	1
D	epth	Blows/	No	Depth	Pen.	Rec.	Blows	SPT	Sample De	escription and	d Identificat	ion	smarl	Field Test	(ft.)	STRATUM Descriptior	(ft.)
_	(11)	Rate	SS-1	(ft.) 0-2	(in) 24	(in) 14	(per 6 in. 1 3) Value 6	SS-1 : Top 4": Dark bro	own, fine to n	nedium SA	, ND, some Silt,	<u>r</u>	Data	 -0.3	TOPSOIL	
	-		SS-2	2-4	24	15	34 23	7	trace Roots Bottom 10": Tan, orang SS-2 : Loose, tan, fine	ge, fine to me to medium S	dium SANI AND, trace	D, some Silt e Silt (wet)	1				
	- 5_																
	-	SS-3 5-7 24 15 3 4 10 SS-3 : Loose, tan, fine to coarse SAND, trace Gravel, trac SS-4 7-9 24 24 6 7 14 SS-4 : Medium dense, tan, fine to coarse SAND, little Silt													STR	ATIFIED GLA	CIAL
	-	SS-4 7-9 24 24 6 7 14 SS-4 : Medium dense, tan, fine to coarse SAND, little Silt, trace Gravel SS-5 9-11 24 21 2 6 SS-5 : Loose, tan, fine to coarse SAND, trace Silt															
	10	- SS-5 9-11 24 21 2 6 SS-5 : Loose, tan, fine to coarse SAND, trace Silt - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -															
	-		SS-6	11-13	24	14	39 65	10	SS-6 : Top 7": Tan, fine Bottom 7": Grey, fine to Silt	e to coarse S o coarse SAN	AND, trace ID, some G	e Silt Gravel, some			13		205.5
N I	- 15		55-7	13-15	24	9	15 39 27 22	61	SS-7 : Top 5":: Grey, fi Bottom 4": Tan, fine to	ne SAND, so medium SAN	me Silt, litt ND and SIL	le Gravel (Wet) T, some Gravel					
2023 2.30.02	-		55-0	13-17	10	10	32 28		some Gravel	, grey, fille to	nd SILT or					GLACIAL TILL	
	-			18.6		12	100/6" 100/1"	_	End of exploration at 18	8.6 feet belov	v grade.		2 3		18.6		199.9
	20 _																
	-																
	- 25 _																
TH DNIDED	-																
איזייין איזאיז איזאיז איזאיז	- - 30																
	1 2 3	- Wet spo - Split sp - Borehol	oon at S oon refu e backfi	S-2. sal at 18.6 lled with s _l	feet be poils ar	elow gr nd sand	ound surface I.	<u> </u>									
	REMA																
	Strati	fication	lines r	epresent	t appr	oxima	te bounda	aries betv	ween soil and bedrock ty	rpes. Actual ti	ransitions r	nay be gradual.			Expl	oration GZ-5	No.:
-																	

								TEST BORI	NG LOG							
G		GZA GeoEi Inginee	nviron ers and S	men cienti.	tal,]	lnc.		500 Main S Groton, Massa	Street achusetts		EXPLORATIO SHEET: PROJECT NO REVIEWED B	ON NO 1 (D: 05 BY: P	D.: G of 1 .00474 2. Wate	iZ-6 465.00 ers		
Log Drill Fore	ged By: ing Co.: eman:	L. Pat GeoS P. Mo	ttershall earch :Clenche	'n			Type of Rig Mo Drilling	f Rig: ATV del: CME-55LC j Method: HSA	Boring Loo Ground Su Final Borir Date Start	ation: Se rface Elev ng Depth (1 - Finish: 4/	e Plan 7. (ft.): 221 f t.): 14.3 /16/2025 - 4/16	/2025		I. Datun 7. Datun	n:Project n: NAVD 88	
Ham	mer Ty	be: Au	Itomatic	Hamr	ner		Sample	er Type: SS		Dato	Ground	wate	r Dept	h (ft.)	Stab Tir	
Ham Ham Aug	imer We imer Fal er or Ca	eight (l I (in.): sing (■12:12 12:30 ■10:0:11:0	10 Dia (i	n.): 3-	1/4, 7-1/8	Sample Sample Core B	er O.D. (In.): 2.0 er Length (in.): 24 arrel Size: NA		4/16/25			6'		5 min	
Depth (ft)	Blows/ Core	No.	Depth	Pen.	Rec.	Blows	SPT	Sample De (Modifie	escription and ed Burmister	d Identifica Procedure	tion)	emarl	Field Test	Depth (ft.)	STRATUM Description	Elev. (ft.)
	Rate	SS-1	0-2	24	8	4 4 6 9) value 10	SS-1 : Loose, brown, fi Silt	ine to coarse	SAND, so	me Gravel, little	<u></u>	Data	0.5	TOPSOIL	_220.5
SS-2 2-4 24 0 1 2 3 SS-2 : No Recovery 5 SS-3 4-6 24 14 3 5 13 SS-3 : Top 2": Brown, fine to medium SAND, lip															FILL	
5_	-	SS-3	4-6	24	14	35 810	13	SS-3 : Top 2": Brown, 1 Bottom 12": Grey, fine Gravel	fine to mediu to coarse SA	m SAND, I ND, some	ittle Silt Silt, trace			5		216.0
	SS-4 6-8 24 13 6 9 9 15 18 15 18 24 Gravel SS-4 : Top 7": Brown, fine to medium SAND and SILT, tr Gravel (wet) D SS-5 10-12 24 15 11 16 33 SS-5 : Dense, tan, grey, fine to coarse SAND and GRAV													STR	ATIFIED GLAC	IAL
10 _	_	SS-5	10-12	24	15	11 16 17 18	33	SS-5 : Dense, tan, gre some Silt	y, fine to coa	rse SAND :	and GRAVEL,				DEPOSITS	
	-	SS-6	12-14	24	18	5 10 42 99	52	SS-6 : Very dense, bro GRAVEL, some Silt	wn, grey, fine	e to coarse	SAND and			1/ 3		206.7
15 _	_	SS-7	14- 14.3	3	3	100/3"		SS-7 : Grey, GRAVEL, (wet) End of exploration at 14	, some fine to	o coarse Sa	and, little Silt	2				200.1
	_									Ū						
20 _	-															
	-															
25	-															
	-															
<u>30</u>	I - Wet spo	oon at S	S-4.													
REMARKS	2 - Borenoi	е раски	lied with sp	JOIIS.												
Strat	ification	lines r	epresent	appr	oxima	te bounda	ries betv	ween soil and bedrock ty	vpes. Actual t	ransitions r	may be gradual.			Expl	oration N GZ-6	10.:

		TEST BORING LOG GZA GeoEnvironmental, Inc. 500 Main Street Groton, Massachusetts EXPLORATION NO.: SHEET: 1 of 1 PROJECT NO: 05.0047465.00														
G		GZA GeoEi Inginee	nviron rs and S	men cienti.	tal,]	lnc.		500 Main S Groton, Massa	Street achusetts		EXPLORATION SHEET: PROJECT NO REVIEWED B	ON NO 1 (): 05 (Y: P	D.: G of 1 .00474 P. Wate	2-7 165.00 ers		
Log Drill Fore	ged By: ing Co. eman:	L. Pat GeoS P. Mc	tershall earch Clenche	n		•	Type of Rig Mo Drilling	f Rig: ATV del: CME-55LC g Method: HSA	Boring Loo Ground Su Final Borin Date Start	ation: Se rface Elev ng Depth (f - Finish: 4	æ Plan /. (ft.): 218 ft.): 10 /17/2025 - 4/17/	2025	F V 5	l. Datuı 7. Datur	m:Project m: NAVD 88	В
Ham	mer Ty	be: Au	tomatic	Hamr	ner		Sample	er Type: SS		Data	Ground	wate	r Dept	h (ft.)	Stab T	
Ham	mer We mer Fa	ight (l I (in.):	b.): 14	40			Sample Sample	er O.D. (in.): 2.0 er Length (in.): 24		4/17/25			4'	epin	5 mir	n
Aug	er or Ca	sing).D./I.D	Dia (i	n.): 3-	1/4, 7-1/8	Core B	arrel Size: NA								
Depth	Casing Blows/		Denth	Samp	le Rec	Blows	SPT	Sample De	escription and	d Identifica	tion	nark	Field	t.)	STRATUM	t.).
(ft)	Core Rate	No.	(ft.)	(in)	(in)	(per 6 in.)) Value	(Modifie	ed Burmister	Procedure		Rer	Data	De De		
	-	55-1	0-2	24	13	24 65		trace Roots	own, fine to n	nedium SA	IND, Some Slit,			+0.4		-2 1 7 .6
	_	SS-2	2-4	24	19	55 65	11	Bottom 8": Brown, fine Gravel SS-2 : Top 6": Brown, t	to coarse SA fine to mediu	ND, some	some Silt, some			2.5 <u>3</u> _ B		215.5 JII.215.0
5_	SS-3 4-6 24 18 3 5 12 Gravel Bottom 6": Orange, brown, fine to medium SAND, some S race Gravel SS-4 6-8 24 23 9 11 22 SS-3 : Medium dense, tan, orange, fine to coarse SAND,											1				
	SS-4 6-8 24 23 9 11 11 22 SS-3 : Medium dense, tan, orange, fine to coarse SAND, trace Silt (wet) SS-5 8-10 24 19 3 4 9 SS-4 : Medium dense, tan, orange, fine to coarse SAND, trace Silt (wet)													STF	RATIFIED GLAG	CIAL
10		SS-5	8-10	24	19	34 513	9	trace Silt SS-5 : Loose, tan, fine	to coarse SA	ND, trace	Silt			10		208.0
10_	1							End of exploration at 10	0 feet below	grade.		2				200.0
15 _																
20 _																
1																
1																
25 _																
30																
EMARKS	I - Wet spo 2 - Borehol	oon at S e backfi	S-3. lled with s	poils.												
R																
Strat	ification	lines r	epresent	t appr	oxima	te bounda	ries bet	ween soil and bedrock ty	rpes. Actual t	ransitions i	may be gradual.			Exp	loration GZ-7	No.:

			TEST BORING LOG GZA 500 Main Street EXPLORATION NO.: GZ-8 GeoEnvironmental, Inc. Groton Massachusetts SHEET: 1 of 1														
C		GZA 500 Main Street EXPLORATION GeoEnvironmental, Inc. Groton, Massachusetts SHEET: PROJECT NO: REVIEWED BY Vid By: L. Pattershall Type of Rig: ATV Ng Co.; GeoSearch Rig Model: CME-55LC															
L D F	ogg rillin orer	ed By: ng Co.: nan:	L. Pat GeoS P. Mc	tershall earch Clenche	n		•	Type of Rig Moo Drilling	FRig: ATV del: CME-55LC J Method: HSA	Boring Loc Ground Su Final Borin Date Start	ation: Se rface Elev g Depth (1 - Finish: 4/	e Plan • (ft.): 216 f t.): 10 /16/2025 - 4/16/	2025		l. Datur 7. Datur	n:Project n: NAVD 8	8
н	lamn	ner Typ	be: Au	tomatic	Hamn	ner		Sample	er Type: SS		Bata	Ground	wate	r Dept	h (ft.)		
H H	lamn Iamn	ner We ner Fal	ight (l l (in.):	b.): 14 30	10			Sample Sample	er O.D. (in.): 2.0 er Length (in.): 24		4/16/25	Time		2'	epin	5 mi	n n
A	uge	r or Ca	sing C).D./I.D I	Dia (i	n.): 3-	1/4, 7-1/8	Core Ba	arrel Size: NA								
De	epth	Casing Blows/ Core	No	Depth	Samp Pen.	le Rec.	Blows	SPT	Sample De (Modifie	scription and d Burmister	d Identificat	tion	emark	Field Test	epth (ft.)	STRATUM Description	1 . (# :) n
-	,	Rate	SS-1	(ft.) 0-2	(in) 24	(in) 13	(per 6 in.) 1 2) Value 7	SS-1 : Top 7": Dark bro	wn, fine to n	nedium SA	, ND, some Silt,	<u>r</u>	Data	0. <u>6</u>	TOPSOIL	<u>215.4</u>
							55		little Roots Bottom 6": Tan. orange.	. fine to coar	se SAND.	some Silt					
	-		SS-2	2-4	24	16	24 56	9	SS-2 : Loose, tan, orang (wet)	ge, fine to m	edium SAN	ND, trace Silt	1				
	5 _		SS-3	4-6	24	16	45 55	10	SS-3 : Medium dense, t	tan, fine to c	oarse SAN	D, trace Silt			STR	ATIFIED GLA DEPOSITS	CIAL
	-		SS-4	6-8	24	23	55 610	11	SS-4 : Medium dense, t trace Gravel	tan, fine to c	oarse SAN	D, trace Silt,					
	-		SS-5	8-10	24	23	48 2223	30	SS-5 : Medium dense, t trace Gravel	tan, fine to c	oarse SAN	D, trace Silt,			10		
1	0 _								End of exploration at 10) feet below (grade.		2		10		206.0
	-																
	-																
1	5																
0	-																
2	20 _																
	-																
	-																
2	25 _																
	-																
	-																
3	1.	Wet spo	oon at S	8-2.													
RKS		- Dorenoi	e dackili	ied with sp	JOIIS.												
REMA																	
s	tratif	ication	lines re	epresent	appro	oxima	te bounda	ries betv	ween soil and bedrock typ	oes. Actual ti	ransitions r	nay be gradual.			Expl	loration GZ-8	No.:

								TEST BORIN	IG LOG							
G		GZA GeoEi Enginee	nviron rs and S	men cienti.	EXPLORATIO SHEET: PROJECT NO REVIEWED B	N NC 1 (: 05 Y: P	D.: G of 1 .00474 .Wate	Z-9 165.00 ers								
Loge Drill Fore	ged By: ing Co. eman:	L. Pat GeoS P. Mc	tershall earch Clenche	en			Type of Rig Mo Drilling	f Rig: ATV del: CME-55LC g Method: HSA	Boring Loc Ground Su Final Borin Date Start	ation: Se rface Elev ng Depth (f - Finish: 4/	e Plan 7. (ft.): 240 f t.): 23 /16/2025 - 4/16/2	2025	H V	l. Datur 7. Datur	m:Project m: NAVD 8	В
Ham	mer Ty	pe: Au	tomatic	Hamr	ner		Sample	er Type: SS		Data	Groundy	vate	r Dept	h (ft.)	Stab T	imo
Ham Ham Aug	imer We imer Fal er or Ca	eight (l II (in.): Ising C	b.): 14 30 D.D./I.D	40 Dia (i	n.): 3-	1/4, 7-1/8	Sample Sample Core B	ar O.D. (in.): 2.0 ar Length (in.): 24 arrel Size: NA		4/16/25	Time		4.5	'	5 mi	<u>וווופ</u> ז
Depth (ft)	Blows/ Core	No.	Depth	Pen.	le Rec.	Blows	SPT	Sample Des (Modified	scription and d Burmister	d Identificat Procedure	tion)	emark	Field Test	Jepth (ft.)	STRATUM Description	ΠEV.) Elev.
	Rate	SS-1	(IL.) 0-2	24	12	(per 6 in. 1 3	9	SS-1 : Loose, dark brow	/n, fine to co	arse SANI) D and SILT,	R R	Data	0.5	TOPSOIL	_239.5
		SS-2	2-4	24	16	2 8 12 21	20	SS-2 : Medium dense, li and GRAVEL, some Silt	ight brown, g t	grey, fine to	o coarse SAND			2	FILL	_238.0
5_	-	SS-3	5-7	ND, some Silt,	1											
	-	SS-4	7-9	SILT, trace			STF	RATIFIED GLA DEPOSITS	CIAL							
10 _	-	SS-5	10-12	24	13	ND (wet)										
15 _	-	SS-6	15-17	24	8	9 11 11 14	22	SS-6 : Medium dense, d GRAVEL, some Silt	lark grey, fir	ne to coarse	e SAND and			13.5	GLACIAL TILI	226.5
20 _	-	SS-7 C-1	20- 20.5 21-23	6 24	6 19	90 50/0)	SS-7 : Dark grey, GRA\ Silt C-1 : Hard, moderatley t weathering, light grey, w REC=53%, RQD=0%	VEL and find to extremely /hite, fine to	e to coarse fractured, medium gi	s SAND, some very slight rained SCHIST	1		21 23	SCHIST	219.0 217.0
25 _	25															
REMARKS	1 - Wet spi 1 - Split sp 2 - Borehol	oon at S oon refu le backfil	S-3. sal at 20.5 lled with s _l	feet. F	lock co	re sample co	ollected fro	om 21 feet to 23 feet.								
Strat	ification	lines r	epresent	t appr	oxima	te bounda	aries betv	ween soil and bedrock typ	es. Actual t	ransitions r	may be gradual.			Exp	loration GZ-9	No.:

Appendix C – Laboratory Test Data

	_											
et 0047465.00 - Task 1 1 of 1 5.1.2025			Laboratory Log and Soil Description		Brown f-m SAND and SILT, trace fine Gravel	Brown f-m SAND, trace Silt	Grey f-c Sand, some Silt, some f- c Gravel	Brown f-m SAND, trace Silt				
0 Main Stre 5roton, MA 05.			Permeability cm/sec									
50 			CBR @ 0.2"									
ject Numbe mmary Pag eport Date		/ Tests	CBR 0.1"									
Pro Su R	068	Permeability	Target Test Setup as % of Proctor									
S	25-D-B	tor / CBR /	Test Moisture Content %									
II, Inc. Iris Egger Client	Jo.: 74;	Proc	Dry unit wt. (pcf)									
rironmenta rood, MA 278-4809 Ch	Seport N		g _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	557								
ZA GeoEnv Norw 781-2 ontact: d By:	SHEET, I		g _d <u>MAX (pcf)</u> W _{opt} (%)	D1								
ject Co ollected	ATA :		Hd	D4792								
Pro	NG DN		Org. %	D2974								
	EST II		Fines %		36.8	1.9	29.1	2.7				
) -54 8 <i>lation</i>	лү т	n Tests	Sand %	D6913	59.0	98.1	48.2	97.3				
l, 0291(467-64 67-239 <u>h.com</u> 1 Founc	RATO	ntificatic	Gravel %		4.2	0.0	22.7	0.0				
Iston R : (401)- (401)-4 thielsc f a Solii	LABO	lde	LL OD									
Cran Phone Fax: (<u>cts</u> 's Buila			к. Г. 81 8 к. 1	D4318							 	
Let			As Rcvd Moisture Content %	D2216								
EGROUP			Laboratory No.		25-S-B660	25-S-B661	25-S-B662	25-S-B663				
DF THE RISE			Depth (ft)		2-4	2-4	11-13	2-4				
			Sample ID		GZ-2 / S-2	GZ-5 / S-2	GZ-5 / S-6/ Bottom 9"	GZ-8 / S-2				
Thi			Material Source		Test Pit	Test Pit	Test Pit	Test Pit				

Project Information:

Client Information:

195 Frances Avenue

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made. This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

5.1.2025

Date Reviewed:

Mindad Cidhia

Reviewed By:

4.25.2025

Date Received:

Appendix D – Rock Core Photographs

500 Main Street, Groton, Massachusetts Rock Core Photographs

Box Row	-
Rock Type	SCHIST
RQD (%)	0
RQD (in)	0
Recovery (%)	53
Recovery (in)	19
Depth (ft)	20 - 23
Run	C-1
Boring No.	GZ-9

Page 1 of 1

GZA GeoEnvironmental, Inc.

Conservation Service

Natural Resources

NSDA

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
6A	Scarboro mucky fine sandy loam, 0 to 3 percent slopes	A/D	7.7	3.7%
32B	Wareham loamy fine sand, 0 to 5 percent slopes	A/D	18.5	9.0%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D	1.1	0.5%
73B	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	D	2.7	1.3%
223B	Scio very fine sandy loam, 3 to 8 percent slopes	B/D	2.8	1.4%
253A	Hinckley loamy sand, 0 to 3 percent slopes	A	18.1	8.8%
253B	Hinckley loamy sand, 3 to 8 percent slopes	A	0.1	0.1%
255A	Windsor loamy sand, 0 to 3 percent slopes	А	4.3	2.1%
256A	Deerfield loamy fine sand, 0 to 3 percent slopes	A	36.3	17.6%
256B	Deerfield loamy fine sand, 3 to 8 percent slopes	A	3.6	1.8%
259A	Carver loamy coarse sand, 0 to 3 percent slopes	A	5.6	2.7%
260B	Sudbury fine sandy loam, 3 to 8 percent slopes	В	2.9	1.4%
300B	Montauk fine sandy loam, 3 to 8 percent slopes	С	20.6	10.0%
305B	Paxton fine sandy loam, 3 to 8 percent slopes	С	1.7	0.8%
325D	Newport channery fine sandy loam, 8 to 25 percent slopes	D	11.5	5.6%
345B	Pittstown silt loam, 3 to 8 percent slopes	D	3.8	1.9%

USDA

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
405B	Charlton fine sandy loam, 3 to 8 percent slopes	В	34.8	16.9%
405C	Charlton fine sandy loam, 8 to 15 percent slopes	В	11.8	5.7%
420B	Canton fine sandy loam, 3 to 8 percent slopes	В	9.5	4.6%
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	A	8.4	4.1%
Totals for Area of Intere	est		206.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Project	Nashoba Satellite	Proje	ct # 16694.00	
	Emergency Facility			
Calculated by	CSH	Date	5/30/2025	
Checked by	KSS	Date	6/19/2025	
REQUIRED RECHARGE VOLUM	E			
Hydrologic	Impervious Area	Inches of Runof	ff Volume	
Soil Group (HSG)	(ft ²)	(in)	(ft ³)	
A	1,230	0.60	62	
В	31,892	0.35	930	
C	134,616	0.25	2,805	
D	2,885	0.10	24	
TOTAL			<u>3,820</u>	
CAPTURE AREA ADJUSTMENT				
Required Recharge	/olume (ft ³)		3.820	
Total Site Net Imper	vious Area (ft ²)		170.623	
Total Site Imperviou	s Area Draining to Recha	rge Facilities (ft ²)	170.623	
Capture Area Adjust	ment Factor		1.00	
Adjusted Required R	techarge Volume (ft ³)		<u>3,820</u>	
PROVIDED RECHARGE VOLUM	E			
Infiltration Basin #1P	<u> </u>			
Volumes provided be	elow the lowest outlet at e	levation: 220.	6	
Provided Volume:		Area	Cumulative Vo	lume
	Elevation	(ft ²)	(ft ³)	
	217.0	7,872	0	
	218.0	9,153	8,513	
	219.0	10,527	18,353	
	220.0	11,995	29,614	
	220.6	12,921	<u>37,088</u>	
Drawdown:	(V _{Infiltration} /A _{Bottom})/Rawl'	s Rate		
	Rawls Recharge Rate:	8.27	(in/hr)	
	Drawdown Time:	7	(hours)	

Recharge Calculations

I	Project		Nashoba	a Satellite		Project #	16694.00	
			Emerger	ncy Facility		-		
	Calculated b	у	CSH			Date	5/30/2025	
(Checked by		KSS			Date	6/19/2025	
RECHARGE	VOLUME	SUMMARY						
							2	
		Require	ed Recharg	e Volume:	3,8	20	(ft ³)	
	Т	otal Rechar	ge Volume	Provided:	37,0)88	(ft ³)	

120 Front Street Suite 500

Worcester, MA 01608

P 508.752.1001

Project:	Nashoba SEF	Project #:	16694.00
Calculated by:	CSH	Date:	6/19/2025
Checked by:	KSS	Date:	6/19/2025

Mounding Analysis

In accordance with MassDEP Stormwater Management Standards, mounding analysis is required for the proposed stormwater infiltration system as the bottom of the system, 217 is within 4 feet of estimated seasonal high groundwater (ESHGW), 214, and the system is used to attenuate the peak discharge rates for the 10-year and larger storms. The mounding analysis was performed using the Hantush method and calculation of the equation variables is included below.

Horizontal Hydraulic Conductivity (K)

Assumed to be 10x greater than the horizontal hydraulic conductivity (Rawl's Rate).

	165.4 FT/DAY
К	82.7 IN/HR
Rawl's	8.27 IN/HR

Specific Yield (E)

From Table 4.2 Values of Specific Yield for Various Geologic Materials, Physical and Chemical Hydrogeology by Patrick A. Domerico and Franklin W. Schwartz. Sand.

Sy 20

Initial Saturated Thickness (h_i)

Estimated seasonal high groundwater (ESHGW) is 214.0 in the vicinity of the infiltration system. Bottom of borings/test pits is 206.0, which is assumed to be the bottom of the aquifer.

ESHGW	ESHGW	214 FT
Bottom of Aquifer		206 FT
hi	ESHGV	/ - Elevation at Bottom of Aquifer FT
hi		8 FT

Recharge Area Dimensions (A/B)

The stormwater recharge area consists of ... The system footprint is 177 feet long by 76 feet wide.

Α	177 FT
В	44.47 FT
	44.5

Recharge Rate (w)

The recharge rate is the runoff volume over the recharge bottom area. For this calculation, the runoff volume for the 10-year, 24-hour storm event was used.

w	9.41 FT/DAY
w	Volume/Area FT/DAY
Area	7,871 SF
Volume	74,052 CF/DAY

<u>Time (t)</u>

Per MassDEP Stormwater Management Standards, infiltration system must be fully dewatered (the maximum height of the mound below the bottom of system) within 72 hours (3 days).

t

3 DAYS

Below, the inputs for the mounding analysis are shown for the online calculator using the Hantush method, provided at http://www.aqtesolv.com/forum/rmound.asp. The results are included on the following page. As shown, the maximum height of the mound at 72 hours is X feet above ESHGW, or elevation X. This is below the bottom of the infiltration system at X.

Note to Engineer: Add screen capture of output from website below

Groundwater Mounding Calculator for Rectangular Recharge Area				
Hydraulic Conductivity (K) = 20.4	[L/T]			
Specific Yield (ϵ) = 0.23	[dimensionless]			
Initial Saturated Thickness (h _i) = 25.3	[L]			
Length of Recharge Area (A) = 224	[L]			
Width of Recharge Area (B) = 49	[L]			
Recharge Rate (w) = 3.39	[L/T]			
Time (t) = 3.0	$[T] (t > t_0)$			
Compute Decay				
Time When Infiltration Stops $(t_0) = 1$	$[T] (0 < t_0 < t)$			
Use consistent units for the above input parameters. For example, enter K in m/day and t in days to compute h_m in m. Compute the recharge rate using $w = q/(A^*B)$ where q is the volumetric recharge rate [L ³ /T].				
Calculate				

Transient Water-Table Rise Beneath a Rectangular Recharge Area Groundwater Mounding Solution by Hantush (1967)

Aquifer Properties: Hydraulic conductivity, K = 165.4 ft/day Specific yield, Sy = 0.2 Initial saturated thickness, h(0) = 8 ft Recharge Area Properties: Recharge rate, w = 9.41 ft/day Simulation time, t = 3 day Time when recharge stops, t(0) = 1 day X coordinate at center of recharge area, X = 44.25 ft Y coordinate at center of recharge area, Y = 19 ft Length in x direction, l = 88.5 ft Length in y direction, a = 38 ft

Water-Table Rise at Center of Recharge Area:

t (day	/) h (ft)
0.3	3.83713
0.6	4.70171
0.9	5.19097
1.2	2.75042
1.5	1.81926
1.8	1.38807
2.1	1.12886
2.4	0.953556
2.7	0.826376
3	0.729627
Note:	recovery begins after 1 day.

_ _ _ _ _ _ _ _ _ _ _ _

Report generated by AQTESOLV v4.50.002 (www.aqtesolv.com) on 06/19/25 at 15:01:11. AQTESOLV for Windows (c) 1996-2007 HydroSOLVE, Inc. All Rights Reserved.

Appendix D:Standard 4 Computations and Supporting Information

- > Operation and Maintenance Plan
- > Water Quality Volume Calculations
- > TSS Removal Worksheets

Nashoba Satellite Emergency Facility

490 Main Street, Groton MA 01450

PREPARED FOR

UMass Memorial Health Care 55 N Lake Avenue Worcester, MA 01655 (508) 334-1000

PREPARED BY

120 Front Street Suite 500 Worcester, MA 01608 508.752.1001

Summer 2025

Table of Contents

Project Inf	ormatior	۱	iii	
Section A:	Source C	ontrol	1	
Section B:	Spill Prev	vention	1	
B.1	Initial	Notification		
B.2	Furthe	Further Notification		
B.3	Assess	Assessment – Initial Containment		
Section C:	Snow Ma	anagement	1	
Section D:	Mainten	ance of Stormwater Management Systems	1	
D.1	Pavem	nent Systems		
	D.1.1	Standard Asphalt Pavement	1	
D.2	2 Struct	ural Stormwater Management Devices	1	
	D.2.1	Catch Basins		
	D.2.2	Stormwater Outfalls	2	
	D.2.3	Roof Drain Leader	2	
D.3	Vegeta	Vegetated Stormwater Management Devices		
	D.3.1	Bioretention Basins Error! Bookmark r	ot defined.	
	D.3.2	Vegetated Areas Maintenance	3	
Section E:	Operatio	ns and Maintenance Plan Summary	1	
E.1	Routir	ne Maintenance Checklists		
E.2	Repor	Reporting and Documentation		
E.3	Consti	Construction Practices Maintenance/ Evaluation Checklist		
E.4	Long-	Long-term Maintenance/Evaluation Checklist		
E.5	Mainte	Maintenance Checklists and Device Location Maps4		

This page intentionally left blank.
Project Information

Site

Nashoba Satellite Emergency Facility 490 Main Street Groton, Massachusetts

Developer

Chris Andersen 281 Lincoln Street Worcester, MA 01605 (508)334-8168

Site Supervisor/Contact

Name:	James Sweeney
Telephone:	(203) 410-0632
Cell phone:	(203) 410-0632
Email:	jim.sweeney@whiting-turner.com

Section A: Source Control

A Source Control

A comprehensive source control program will be implemented at Nashoba Satellite Emergency Facility, which includes the following components:

- > Regular pavement sweeping
- > Catch basin cleaning
- > Clearing litter from the parking area, islands, and perimeter landscape areas
- > Enclosure and regular maintenance of all dumpsters
- > Spill Prevention training

Section B: Spill Prevention

B Spill Prevention

Spill prevention equipment and training will be provided by the property management company

B.1 Initial Notification

In the event of a spill the facility and/or construction manager or supervisor will be notified immediately.

Facility Manager (name):	Chris Andersen
Facility Manager (phone):	(617) 699-2821
Construction Manager (name) :	James Sweeney
Construction Manager (phone):	(203) 410-0632

The supervisor will first contact the Fire Department and then notify the Police Department, the Public Health Commission and the Conservation Commission. The Fire Department is ultimately responsible for matters of public health and safety and should be notified immediately.

B.2 Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the main construction/facility office and readily accessible to all employees. A hazardous waste spill report shall be completed as necessary using the attached form.

Emergency Notification Phone Numbers

1.	FACILITY N	MANAGER		
	Name:	Chris Andersen	Phone:	(617) 699-2821
			Beeper/Cell:	
			Home Phone:	
	Alternate	Contact:	Phone:	
			Beeper/Cell:	
			Home Phone:	
2.	FIRE & POL	ICE DEPARTMENT	Emergency:	911
3.	CLEANUP C	CONTRACTOR		
	Address:		Phone:	
4.	MASSACHU	JSETTS DEPARTMENT OF ENVIRONMENTAL	Emergency:	(888) 304-1133
	PROTECTIC	DN (DEP)		
5.	NATIONAL	RESPONSE CENTER	Phone:	(800) 424-8802
	Alternate:	U.S. Environmental Protection Agency	Emergency:	
			Business:	
6.	GROTON B	OARD OF HEALTH	Phone:	(978) 448-1100
	Groton Con	servation Commission:	Phone:	(978) 448-1100

Hazardous Waste & Oil Spill Report

Date:			Time:		AM / PM		
Exact location (Transformer #):							
Type of equipment:			Make:	Siz	e:		
S / N:	Weather Conditions:						
On or near water?	YesNo	lf yes, na	me of body of water:				
Type of chemical / oi	l spilled:						
Amount of chemical	/ oil spilled:						
Cause of spill:							
Measures taken to contain or clean up s	pill:						
Amount of chemical	/ oil recovere	ed:	N	/lethod:			
Material collected as	a result of cl	eanup:					
	drums conta	ining					
	drums conta	ining					
	drums conta	ining					
Location and method	of debris disp	oosal:					
Name and address of or corporation suffer	f any person, ing charges:	firm,					
Procedures, method, a instituted to prevent a from recurring:	nd precautior similar occuri	ns rence					
Spill reported by Gen	eral Office b	y:		Time:	AM / PM		
Spill reported to DEP	/ National R	esponse C	enter by:				
DEP Date:		Time:	AM / PM	Inspector:			
NRC Date:		Time:	AM / PM	Inspector:			
Additional comments	5:						

B.3 Assessment – Initial Containment

The supervisor or manager will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. A list of recommended spill equipment to be kept on site is included on the following page.

Fire / Police Department:	911
Groton Health Department	(978) 448-1100
Groton Conservation Commission:	(978) 448-1100

Emergency Response Equipment

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

Supplies	Quantity	Recommended Suppliers
Sorbent Pillows/"Pigs"	2	http://www.newpig.com Item # KIT276 — mobile container with two pigs
> Sorbent Boom/Sock	25 feet	http://www.forestry-suppliers.com
> Sorbent Pads	50	
> Lite-Dri® Absorbent	5 pounds	
> Shovel	1	Item # 33934 — Shovel (or equivalent)
> Pry Bar	1	Item # 43210 — Manhole cover pick (or equivalent)
> Goggles	1 pair	Item # 23334 — Goggles (or equivalent)
> Gloves – Heavy	1 pair	Item # 90926 — Gloves (or equivalent)

Section C: Snow Management

C Snow Management

Snow storage areas are shown in the proposed Site Plans.

- Snow storage areas will be managed to prevent blockage of storm drain catch basins and stormwater drainage swales. Snow combined with sand and debris may block a storm drainage system, diminishing the infiltration capacity of the system and causing localized flooding.
- > Sand and debris deposited on vegetated or paved areas shall be cleared from the site and properly disposed of at the end of the snow season, no later than May 15.
- > Snow shall not be dumped into any waterbody, pond, or wetland resource area.

Section D: Maintenance of Stormwater Management Systems

D Maintenance of Stormwater Management Systems

D.1 Pavement Systems

D.1.1 Standard Asphalt Pavement

- Sweep or vacuum standard asphalt pavement areas at least two times per year with a rotary brush sweeper, vacuum or regenerative air sweeper and properly dispose of removed material.
- > Recommended sweeping schedule:
- > Oct/Nov
- > Apr/May
- More frequent sweeping of paved surfaces will result in less accumulation in catch basins, less cleaning of subsurface structures, and less disposal costs.
- > Check loading docks and dumpster areas frequently for spillage and/or pavement staining and clean as necessary.

D.2 Structural Stormwater Management Devices

D.2.1 Catch Basins / Area Drains

The proper removal of sediments and associated pollutants and trash occurs only when catch basin / area drain inlets and sumps are cleaned out regularly. The more frequent the cleaning, the less likely sediments will be re-suspended and subsequently discharged. In addition, frequent cleaning also results in more volume available for future deposition and enhances the overall performance. As noted in the pavement Operation and Maintenance (O&M) section, more frequent sweeping of paved surfaces will result in less accumulation in catch basins, less cleaning of subsurface structures, and less disposal costs.

These catch basins and area drains are constructed with sumps (minimum 4 feet for catch basin and 2 feet minimum for area drain) and hooded outlets in the catch basin to trap debris, sediments, and floating contaminants. Disposal of all sediments must be in

accordance with applicable local, state, and federal guidelines. A map of the catch basin and area drain locations is included in Section E.5 Maintenance Checklists and Device Location Maps.

Inspections and Cleaning

- > All catch basins and area drains shall be inspected at least four times per year and cleaned a minimum of at least once per year.
- Sediment (if more than six inches deep) and/or floatable pollutants shall be pumped from the basin and disposed of at an approved offsite facility in accordance with all applicable regulations.
- Any structural damage or other indication of malfunction will be reported to the site manager and repaired as necessary
- > During colder periods, the catch basin and area drain grates must be kept free of snow and ice.
- > During warmer periods, the catch basin and area drain grates must be kept free of leaves, litter, sand, and debris.

D.2.2 Stormwater Outfalls

The stormwater drainage system has outfall locations where stormwater is discharged. A map of these locations is included in Section E.5 Maintenance Checklists and Device Location Maps.

- > Inspect outfall locations monthly for the first three months after construction to ensure proper functioning and correct any areas that have settled or experienced washouts.
- > Inspect outfalls annually after initial three-month period.
- > Annual inspections should be supplemented after large storms, when washouts may occur.
- > Maintain vegetation around outfalls to prevent blockages at the outfall.
- > Maintain rip rap pad below each outfall and replace any washouts.
- > Remove and dispose of any trash or debris at the outfall.

D.2.3 Roof Drain Leader

- > Perform routine roof inspections quarterly.
- > Keep roofs clean and free of debris.
- > Keep roof drainage systems clear.
- > Keep roof access limited to authorized personnel.
- > Clean inlets twice per year or as necessary.

D.3 Vegetated Stormwater Management Devices

D.3.1 Surface Infiltration Basin

There is one surface infiltration bason at the proposed Nashoba Satellite Emergency Facility. The infiltration/detention ponds are partially vegetated basins that are designed to detain, clean and infiltrate roadway and rooftop runoff. The maintenance of the infiltration basins may affect the functioning of stormwater management practices. This includes the condition of the side slope vegetation and the sediment deposits in the bottom of the ponds.

Initial Post-construction Inspection

> Infiltration basins should be inspected after every major storm for the first few months to ensure proper stabilization and function.

Long-term Maintenance

- The grass on the sideslopes and in the buffer areas should be mowed, and grass clippings, organic matter, and accumulated trash and debris removed, at least twice during the growing season.
- > Eroded or barren spots should be reseeded immediately after inspection to prevent additional erosion and accumulation of sediment.
- > Deep tilling can be used to break up a clogged surface area.
- > Sediment should be removed from the basin as necessary. Removal procedures should not take place until the floor of the basin is thoroughly dry.

Inspections and Cleaning

- Infiltration basins should be inspected at least twice a year to ensure proper stabilization and function.
- > Light equipment, which will not compact the underlying soil, should be used to remove the top layer.

D.3.2 Vegetated Areas Maintenance

Although not a structural component of the drainage system, the maintenance of vegetated areas may affect the functioning of the stormwater management system. This includes the health/density of vegetative cover and activities such as the application and disposal of lawn and garden care products, disposal of leaves and yard trimmings and proper aeration of soils.

- > Inspect planted areas on a semi-annual basis and remove any litter.
- > Maintain planted areas adjacent to pavement to prevent soil washout.
- > Immediately clean any soil deposited on pavement.
- > Re-seed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming.

- > Plant alternative mixture of grass species in the event of unsuccessful establishment.
- > The grass vegetation should be cut to a height between three and four inches.
- > Pesticide/Herbicide Usage No pesticides are to be used unless a single spot treatment is required for a specific control application.
- Fertilizer usage should be avoided. If deemed necessary, slow release fertilizer should be used. Fertilizer may be used to begin the establishment of vegetation in bare or damaged areas, but should not be applied on a regular basis unless necessary.
- > Annual application of compost amendments and aeration are recommended.

Section E: Operations and Maintenance Plan Summary

E Operations and Maintenance Plan Summary

This Operation and Maintenance Plan has been prepared in accordance with the Stormwater Management Policy developed by the DEP and local regulations. It specifies operational practices and drainage system maintenance requirements for the site. Requirements should be adjusted by the site manager as necessary to ensure successful functioning of system components.

E.1 Routine Maintenance Checklists

Routine required maintenance is described in Sections A – D. The following checklists are to be used by the property manager to implement and document the required maintenance and inspection tasks.

E.2 Reporting and Documentation

The site supervisor shall be responsible for ensuring that the scheduled tasks as described in this plan are appropriately completed and recorded in the Maintenance Log. Accurate records of all inspections, routine maintenance and repairs shall be documented and these records shall be available for inspection by members of the Groton Earth Removal-Stormwater Advisory Committee, or their designated agent, upon request.

The Maintenance Log shall:

- > Document the completion of required maintenance tasks.
- > Identify the person responsible for the completion of tasks.
- > Identify any outstanding problems, malfunctions or inconsistencies identified during the course of routine maintenance.
- > Document specific repairs or replacements.

E.3 Construction Practices Maintenance/ Evaluation Checklist

Best Management Practice	Inspection Frequency	Date Inspected	Inspector Initials	Minimum Maintenance and Key Items to Check	Cleaning or Repair Needed UYes/No (List Items)	Date of Cleaning or Repair	Performed by:
Siltsock/ Silt Fencing	Weekly and after any rainfall			Sediment build up, broken bales or stakes			
Gravel Construction Entrance	Weekly and after any rainfall			Filled voids, runoff/sediments into street			
Catch Basin Protection	Weekly and after any rainfall			Clogged or sediment build- up at surface or in basin			
Diversion Channels	Weekly and after any rainfall			Maintained, moved as necessary to correct locations, Check for erosion or breakout			
Temporary Sedimentation Basins	Weekly and after any rainfall			Cracking, erosion, breakout, sediment buildup, contaminants			

Nashoba Satellite Emergency Facility – Groton, MA

Stormwater Control Manager:

E.4 Long-term Maintenance/Evaluation Checklist

Best Management Practice	Minimum Maintenance and Key Items to Check	Inspection Frequency	Date Inspected	Inspector Initials	Cleaning Frequency	Cleaning or Repair Needed Yes/No	Date of Cleaning or Repair	Performed by:
Street Sweeping	Vacuum sweeper	4X per year			4X per year* minimum			
Outfall Structures	Remove debris and excess vegetation, replace any dislodged riprap	1X per year			1X per year			
Deep Sump and Hooded Catch basins / Area Drains	Remove sediment 1X per year or if >6 inches	4X per year			1X per year or as necessary			
Bioretention Basins	Inspect inlets, vegetation, overflow discharge pipes, drain time less than 4 days	2X per year first year, annually thereafter			2X per year first year, annually thereafter			
Roof Drains	Remove debris, clean inlets draining to subsurface bed	4x per year roof inspection			2x per year inlet cleaning, roof debris as necessary			

Nashoba Satellite Emergency Facility – Groton, MA

* Recommend sweeping Oct/Nov, Feb/Mar, Apr/May Jul/Aug with late winter most important

Stormwater Control Manager:

E.5 Maintenance Checklists and Device Location Maps

These checklists are provided for the maintenance crew to photocopy and use when conducting inspections and cleaning activities to the stormwater management systems.

Maintenance Checklists

Catch Basins / Area Drains – Inspect 4 times per year, clean when sediment depth >6 inches or at least once per year.

Catch Basin /		Sediment	Cleaning		
Area	Inspected	Depth	needed	Date	
Drains	(Y/N)	(inches)	(Y/N)	Cleaned	Comments (Trash, Oil, Pet waste, Lawn Debris, Damage)
				/ /	
				/ /	
				/ /	
				/ /	
				/ /	
				/ /	
				/ /	
				/ /	
				/ /	
				/ /	
				/ /	

Outfalls – Inspect 4 times per year, replace any dislodged rip-rap, remove excess vegetation, remove any debris.

Outfall	Inspected (Y/N)	Sediment Depth (inches)	Cleaning needed (Y/N)	Date Cleaned	Comments (Trash, Oil, Pet waste, Lawn Debris, Damage)
				/ /	
				/ /	
				/ /	
				/ /	

Infiltration/Detention Basins – Inspect once per year, remove sediment if more than 6 inches has accumulated in sediment forebay or sediment collection row.

Infiltration basin	Inspected (Y/N)	Sediment Depth (inches)	Cleaning needed (Y/N)	Date Cleaned	Comments (Trash, Oil, Pet waste, Lawn Debris, Damage)
Infiltration Basin #1P				/ /	

Roof Runoff Downspouts – Inspect roof drains monthly, clean inlets draining to the subsurface bed twice per year.

Bldg #	Inspected (Y/N)	Sediment Depth (inches)	Cleaning needed (Y/N)	Date Cleaned	Comments (Trash, Oil, Pet waste, Lawn Debris, Damage)
Medical Office Building				/ /	
Satellite Emergency Facility				/ /	

Device Location Maps

Groton, MA

O&M Annual Maintenance Cost Estimate

Project	Nashoba Satellite	Project #	16694.00
	Emergency Facility	_	
Calculated by	MGH	Date	6/16/2025
Checked by	BMG	Date	6/19/2025

OPINION OF PROBABLE COST FOR MAINTENANCE OF STORMWATER BEST MANAGEMENT PRACTICES

Values below include maintenance operations for the Emergency Department Expansion (EDE) and the Parking Expansion (PE) components of the Project.

ВМР	#/year	\$/#	Annual Cost
Catch Basin Cleaning (7)	1	\$10,000	\$10,000
Outfall Cleaning	1	\$0 ¹	\$0
Bioretention Basin Maintenance (2)	2	\$0 ²	\$0
Vegetated Area Maintenance	2	\$0 ²	\$0

\$10,000 Annual O&M Estimate

¹ Assumes outfall inspections and removal of vegetated growth by Owner's staff.

² Assumes maintenance of vegetated areas covered under landscape contract, allocated separately.

Water Quality Volume Calculations

	Project	Nashoba Satellite	Proje	ect # 16694.00
		Emergency Facility		
	Calculated by	CSH	Date	6/12/2025
	Checked by	KSS	Date	6/19/2025
Infiltra	tion Basin #1P			
Runoff	from subcatchment area F	PR-2B & PR-2C		
		Water Quality Storm	Runoff Depth (in) 1.0
		Total Imp	pervious Area (ft ²) 170,623
	SEDIMENT FOREBAY	WQV:		
	Required Volume*:	Runoff Dept	th to be Treated	Required Volume
			(in)	(ft ³)
			0.1	<u>1,422</u>
	Provided Volume:	Elevation	Area	Cumulative Volume
		217.0	(ft²)	(ft ³)
		217.0	383	0
		218.0	696	540
		215.0	1,000	1,720
	BASIN WQV:			
	Required Volume:	Runoff Dept	th to be Treated	Required Volume
			(in)	(ft ³)
			1.0	<u>14,219</u>
	Provided Volume:		Area	Cumulative Volume
		Elevation	(ft ²)	(ft ³)
		217.0	7,872	0
		218.0	9,153	8,513
		219.0	10,527	18,353
		220.0	11,995	29,614
		221.0	13,557	42,390
		222.0	15,213	<u>56,775</u>
	FREEBOARD CHECK			
	FREEBOARD CHECK:		100-YR Peak Eleva	tion: 220.9
	FREEBOARD CHECK:	Ν	100-YR Peak Eleva ⁄Iaximum Basin Eleva	tion: 220.9 tion: 222.0

101 Walnut Street	Post Office Box 9151

TSS Removal Calculation Worksheet

Sheet: 1 of 1	Date: 23-Jun-2025	Computed by: CSH	Checked by:	
Nashoba Emergency Fac.	16694.00	Groton, MA	Infiltration Basin 1P>DP-2	PR-2B & PR-2C
Project Name:	Project Number:	Location:	Discharge Point:	Drainage Area(s):

naining Load (D-E)

75%

56%

56%

44%

Pre-Treatment TSS Removal =

1. Pre-Treatment prior to Infiltration

Watertown, MA 02471 P 617.924.1770

BMP*	TSS Removal Rate*	Starting TSS Load**	Amount Removed (C*D)	Rei
Deep Sump and Hooded Catch Basin	25%	100%	25%	
Sediment Forebay	25%	75%	19%	
	%0	56%	%0	

2. Total TSS Removal including Pretreatment 1.

BMP*	TSS Removal Rate*	Starting TSS Load**	Amount Removed (C*D)	Remaining Load (D-E)
Infiltration Basin	80%	100%	80%	20%
	%0	20%	%0	20%
	%0	20%	%0	20%
	%0	20%	%0	20%
* BMP and TSS Removal Rate Values fi	from the MassDEP Stormwater Handbo	ok Vol. 1.	Treatment Train	

** Equals remaining load from previous BMP (E)

80%

TSS Removal =

Appendix E: Standard 8 Supporting Information

> Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan

Section A: Erosion and Sedimentation Control Measures

As part of the Construction General Permit Notice of Intent process, an erosion and sedimentation control plan will be developed, and will include measures such as those described below.

Erosion and Sedimentation Control Measures

The following erosion and sedimentation controls are for use during the earthwork and construction phases of the project. The following controls are provided as recommendations for the site contractor and do not constitute or replace the final Stormwater Pollution Prevention Plan that must be fully implemented by the Contractor and owner in Compliance with EPA NPDES regulations.

Siltsock Barriers

Siltsock barriers will be placed to trap sediment transported by runoff before it reaches the drainage system or leaves the construction site.

Silt Fencing

In areas where high runoff velocities or high sediment loads are expected, siltsock barriers will be backed up with silt fencing. This semi-permeable barrier made of a synthetic porous fabric will provide additional protection. The silt fences and siltsock barrier will be replaced as determined by periodic field inspections or once sediment buildup reaches ¼ the height of the silt fence or siltsock.

Catch Basin Protection

Newly constructed and existing catch basins will be protected with siltsock barriers (where appropriate) or silt sacks throughout construction.

Gravel and Construction Entrance/Exit

A temporary crushed-stone construction entrance/exit will be constructed. A cross slope will be placed in the entrance to direct runoff to a protected catch basin inlet or settling area. If deemed necessary after construction begins, a wash pad may be included to wash off vehicle wheels before leaving the project site.

Diversion Channels

Diversion channels will be used to collect runoff from construction areas and discharge to either sedimentation basins or protected catch basin inlets.

Temporary Sediment Basins

Temporary sediment basins will be designed either as excavations or bermed stormwater detention structures (depending on grading) that will retain runoff for a

Appendix F: Erosion and Sedimentation Control Measures

I\vhb.com\gbl\proj\Worcester\16694.0 0 Nashoba Valley\05 Work\LD\StormwaterMgmt\ Appendices\Appendix E - Standard 8 Computations and Supporting Information\Erosion and Sedimentation Control Measures.docx sufficient period of time to allow suspended soil particles to settle out prior to discharge. These temporary basins will be located based on construction needs as determined by the contractor and outlet devices will be designed to control velocity and sediment. Points of discharge from sediment basins will be stabilized to minimize erosion. Temporary sediment trapping devices shall not be removed until permanent stabilization is established in all contributory drainage areas. Similarly, stabilization shall be established prior to converting sediment traps/basins into permanent (post-construction) stormwater management facilities. All facilities used as temporary measures shall be cleaned prior to being put into final operation.

Vegetative Slope Stabilization

Stabilization of open soil surfaces will be implemented within 14 days after grading or construction activities have temporarily or permanently ceased, unless there is sufficient snow cover to prohibit implementation. Vegetative slope stabilization will be used to minimize erosion on slopes of 3:1 or flatter. Annual grasses, such as annual rye, will be used to ensure rapid germination and production of root mass. Permanent stabilization will be completed with the planting of perennial grasses or legumes. Establishment of temporary and permanent vegetative cover may be established by hydro-seeding or sodding. Four inches of a suitable topsoil, good seedbed preparation, and adequate lime, fertilizer and water will be provided for effective establishment of these vegetative stabilization methods. Mulch will also be used after permanent seeding to protect soil from the impact of falling rain and to increase the capacity of the soil to absorb water. During the months of October through March, when seeding may be impractical, an anchored mulch or sod shall be applied as approved by the Committee or by the Committee's designee; diversions and/or prepared outlets may be required in critical areas during construction. Permanent seeding will be undertaken in the spring from March through May and in late summer and early fall from August to October 15. During the peak summer months and in the fall after October 15, when seeding is found to be impractical, an appropriate temporary mulch shall be applied.

Stockpile Management

- Soil and other materials shall not be stockpiled or redistributed, either temporarily or permanently, in locations or in such a manner as would cause suffocation of tree root systems.
- Topsoil shall be stripped from disturbed areas, stockpiled in approved areas and stabilized with temporary vegetative cover if it is to be left for more than 30 calendar days; perimeter sediment controls shall be installed around each area of stockpiled topsoil.
- Soil stockpiles shall be stabilized or covered at the end of each workday.

Appendix F: Erosion and Sedimentation Control Measures

Whb.com/gbl/proj/Worcester/16694.0 0 Nashoba Valley/05_Work/LD/StormwaterMgmt/ Appendices/Appendix E - Standard 8 Computations and Supporting Information/Erosion and Sedimentation Control Measures.docx

Dust Control

Periodically moisten exposed surfaces on unpaved travelways to keep the travelway damp and reduce dust.

Inspections

Prior to any land disturbance activities commencing on the site, the developer shall physically mark limits of no land disturbance on the site with tape, signs, or orange construction fence, so that workers can see the areas to be protected. An inspection with a representative of the Committee will be scheduled and completed before clearing commences.

Appropriate erosion and sediment control measures shall be installed prior to soil disturbance. Measures shall be taken to control erosion within the project area. Sediment in runoff water shall be trapped and retained within the project area. Wetland areas and surface waters shall be protected from sediment. An inspection with a representative of the Committee will be scheduled and completed before clearing commences.

Maintenance

- The contractor or subcontractor will be responsible for implementing each control shown on the Sedimentation and Erosion Control Plan. In accordance with EPA and the Town of Groton regulations, the contractor must sign a copy of a certification to verify that a plan has been prepared and that permit regulations are understood.
- The on-site contractor will inspect all sediment and erosion control structures periodically and after each rainfall event. Records of the inspections will be prepared and maintained on-site by the contractor.
- Silt shall be removed from behind barriers if greater than 6-inches deep or once sediment buildup reaches ¹/₄ the height of the silt fence or siltsock.
- > Damaged or deteriorated items will be repaired immediately after identification.
- > The underside of siltocks should be kept in close contact with the earth and reset as necessary.
- Sediment that is collected in structures shall be disposed of properly and covered if stored on-site.

- Erosion control structures shall remain in place until all disturbed earth has been securely stabilized. After removal of structures, disturbed areas shall be regraded and stabilized as necessary.
- All temporary erosion and sediment control measures shall be removed after final site stabilization. Disturbed soil areas resulting from the removal of temporary measures shall be permanently stabilized within 30 days. Written certification that this condition has been met, shall be submitted.

The sedimentation and erosion control plan is included in project plan set; a reduced version and Erosion Control Maintenance checklist is included here for quick reference.

Construction Best Management Practices - Maintenance/Evaluation Checklist

Construction Practices Maintenance/ Evaluation Checklist

Best Management Practice	Inspection Frequency	Date Inspected	Inspector Initials	Minimum Maintenance and Key Items to Check	Cleaning or Repair Needed Yes/No (List Items)	Date of Cleaning or Repair	Performed by:
Siltsock/ Silt Fencing	Weekly and after any rainfall			Sediment build up, broken bales or stakes			
Gravel Construction Entrance	Weekly and after any rainfall			Filled voids, runoff/sediments into street			
Catch Basin Protection	Weekly and after any rainfall			Clogged or sediment build- up at surface or in basin			
Diversion Channels	Weekly and after any rainfall			Maintained, moved as necessary to correct locations, Check for erosion or breakout			
Temporary Sedimentation Basins	Weekly and after any rainfall			Cracking, erosion, breakout, sediment buildup, contaminants			

Nashoba Satellite Emergency Facility – Groton, Massachusetts

Stormwater Control Manager:

Section B: Construction Spill Prevention & Response

This page intentionally left blank.

Construction Phase Spill Prevention

Spill prevention equipment and training will be provided by the general contractor.

Initial Notification

In the event of a spill the facility and/or construction manager or supervisor will be notified immediately.

Facility Manager (name):	Chris Andersen
Facility Manager (phone):	(617) 699-2821
Construction Manager (name) :	James Sweeney
Construction Manager (phone):	(203) 410-0632

The supervisor will first contact the Fire Department and then notify the Police Department, the Public Health Commission and the Conservation Commission. The Fire Department is ultimately responsible for matters of public health and safety and should be notified immediately.

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The MassDEP and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the main construction/facility office and readily accessible to all employees. A hazardous waste spill report shall be completed as necessary using the attached form.

Emergency Notification Phone Numbers

1.	FACILITY	MANAGER		
	Name:	Chris Anderson	Phone:	(617) 699-2821
			Beeper/Cell:	
			Home Phone:	
	Alternate		Phone:	
	Contact:		-	
			Beeper/Cell:	
			Home Phone:	
2.	FIRE & PO	LICE DEPARTMENT	Emergency:	911
3.	CLEANUP	CONTRACTOR		
	Address:		Phone:	
4.	MASSACHU	ISETTS DEPARTMENT OF ENVIRONMENTAL	Emergency:	(888) 304-1133
	PROTECTIO	N (DEP)		
5.	NATIONAL	RESPONSE CENTER	Phone:	(800) 424-8802
	Alternate:	U.S. Environmental Protection Agency	Emergency:	Alternate:
			Business:	
c	CROTON		Dhanai	(079) 119 1100
ь.			Phone:	(970) 440-1100
	Groton Con	servation commission:	Phone:	(978) 448-1100

Hazardous Waste & Oil Spill Report

Date:			Time:		AM / PM
Exact location (Transformer #):					
Type of equipment:			Make:	Size:	
S / N:			Weather Condition	s:	
On or near water?	□ Yes □ No	lf yes, name	e of body of water: _		
Type of chemical / oi	l spilled:				
Amount of chemical	/ oil spilled:				
Cause of spill:					
Measures taken to contain or clean up s	pill:				
Amount of chemical	/ oil recovere	ed:	Met	thod:	
Material collected as	a result of cl	eanup:			
	drums conta	ining			
	drums conta	ining			
	drums conta	ining			
Location and method	of debris disp	osal:			
Name and address of or corporation suffer	f any person, ing charges:	firm,			
Procedures, method, a instituted to prevent a from recurring:	nd precautior similar occuri	ns rence			
Spill reported by Gen	eral Office b	y:	Tin	ne:	AM / PM
Spill reported to DEP	/ National R	esponse Cen	ter by:		
DEP Date:		Time:	AM / PM	Inspector:	
NRC Date:		Time:	AM / PM	Inspector:	
Additional comments	5:				

Assessment – Initial Containment

The supervisor or manager will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. A list of recommended spill equipment to be kept on site is included on the following page.

Fire / Police Department:	911
Groton Health Department	(978) 448-1100
Groton Conservation Commission:	(978) 448-1100

Emergency Response Equipment

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

Supplies	Quantity	Recommended Suppliers
Sorbent Pillows/"Pigs"	2	http://www.newpig.com Item # KIT276 — mobile container with two pigs
Sorbent Boom/Sock	25 feet	http://www.forestry-suppliers.com
Sorbent Pads	50	
Lite-Dri [®] Absorbent	5 pounds	
Shovel	1	Item # 33934 — Shovel (or equivalent)
Pry Bar	1	Item # 43210 — Manhole cover pick (or equivalent)
Goggles	1 pair	Item # 23334 — Goggles (or equivalent)
Gloves – Heavy	1 pair	Item # 90926 — Gloves (or equivalent)

Appendix F: Standard 10 Illicit Discharge Statement

Illicit Discharge Compliance Statement

I, as Applicant and Applicant's Representative, certify the following as they pertain to the proposed development at 490 Main Street, Groton, Massachusetts:

 Sanitary sewer and storm drainage structures which were part of the previous development on this site are to be completely removed during the site redevelopment. The design plans submitted with this report have been designed in full compliance with current standards. The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges.

Applicant

Name: Brittany Gesner, PE

Company: VHB Signature: